Treatment of the Proprioception and Technology

  • Zeynep Bahadir Ağce
  • Adnan Kara
  • Baris Gulenc


Proprioception has an important role in motor control and proprioceptive sensory training can improve motor function. In this chapter, the effects of the technological developments on robotic device applications and new technological materials in proprioceptive rehabilitation are discussed.


Robot training Virtual reality iProprio Kinesthesia 


  1. 1.
    Clark VM, Burden AM. A 4-week wobble board exercise programme improved muscle onset latency and perceived stability in individuals with a functionally unstable ankle. Phys Ther Sport. 2005;6:181–7.CrossRefGoogle Scholar
  2. 2.
    Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44:3414–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Hughes CML, Tommasino P, Budhota A, Campolo D. Upper extremity proprioception in healthy aging and stroke populations, and the effects of therapist-and robot-based rehabilitation therapies on proprioceptive function. Front Hum Neurosci. 2015;9:120.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cappello L, Elangovan N, Contu S, Khosravani S, Konczak J, Masia L. Robot-aided assessment of wrist proprioception. Front Hum Neurosci. 2015;9:198.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fling BW, Dutta GG, Schlueter H, Cameron MH, Horak FB. Associations between proprioceptive neural pathway structural connectivity and balance in people with multiple sclerosis. Front Hum Neurosci. 2014;8:814.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mahmoudian A, van Dieen JH, Baert IA, Jonkers I, Bruijn SM, Luyten FP, et al. Changes in proprioceptive weighting during quiet standing in women with early and established knee osteoarthritis compared to healthy controls. Gait Posture. 2016;44:184–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Ingemanson ML, Rowe JB, Chan V, Wolbrecht ET, Cramer SC, Reinkensmeyer DJ. Use of a robotic device to measure age-related decline in finger proprioception. Exp Brain Res. 2016;234:83–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen L, Lo WLA, Mao YR, Ding MH, Lin Q, Li H, et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016;2016:7309272.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Haas CT, Buhlmann A, Turbanski S, Schmidtbleicher D. Proprioceptive and sensorimotor performance in Parkinson’s disease. Res Sports Med. 2006;14:273–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Teasdale H, Preston E, Waddington G. Proprioception of the ankle is impaired in people with Parkinson’s disease. Mov Disord Clin Pract. 2017;4(4):524–8.CrossRefGoogle Scholar
  11. 11.
    Cooper R, Taylor N, Feller J. A randomised controlled trial of proprioceptive and balance training after surgical reconstruction of the anterior cruciate ligament. Res Sports Med. 2005;13:217–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Stanton T, Leake H, Bowering K, Moseley G. Evidence of impaired proprioception in chronic idiopathic neck pain: a systematic review and meta-analysis. Physiotherapy. 2015;101:1432–3.Google Scholar
  13. 13.
    Lefaivre SC, Almeida QJ. Can sensory attention focused exercise facilitate the utilization of proprioception for improved balance control in PD? Gait Posture. 2015;41:630–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Harem Sadaqat SA, Malik AN. Kinesthetic and proprioceptive impairments in diabetic patients. J Riphah Coll Rehabil Sci. 2013;1:12–6.Google Scholar
  15. 15.
    Packer M, Williams M, Samuel D, Adams J. Hand impairment and functional ability: a matched case comparison study between people with rheumatoid arthritis and healthy controls. Hand Therapy. 2016;21:115–22.CrossRefGoogle Scholar
  16. 16.
    Bank PJ, Peper CLE, Marinus J, Beek PJ, van Hilten JJ. Motor dysfunction of complex regional pain syndrome is related to impaired central processing of proprioceptive information. J Pain. 2013;14:1460–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Meyer S, Karttunen AH, Thijs V, Feys H, Verheyden G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys Ther. 2014;94:1220.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee Y, Chen K, Ren Y, Son J, Cohen BA, Sliwa JA, et al. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis. Mult Scler Relat Disord. 2017;11:65–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Cuppone A, Squeri V, Semprini M, Konczak J. Robot-assisted training to improve proprioception does benefit from added vibro-tactile feedback. Engineering in Medicine and Biology Society [EMBC], 37th Annual International Conference of the IEEE; 2015.Google Scholar
  20. 20.
    Jones SA, Fiehler K, Henriques DY. A task-dependent effect of memory and hand-target on proprioceptive localization. Neuropsychologia. 2012;50(7):1462–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Wade E, Winstein CJ. Virtual reality and robotics for stroke rehabilitation: where do we go from here? Top Stroke Rehabil. 2011;18:685–700.CrossRefPubMedGoogle Scholar
  22. 22.
    Senanayake SA. Negative biofeedback for enhancing proprioception training on wobble boards. In: Soft computing in industrial applications. Berlin, Heidelberg: Springer-Verlag; 2011. p. 163–72.Google Scholar
  23. 23.
    Casadio M, Morasso P, Sanguineti V, Giannoni P. Minimally assistive robot training for proprioception enhancement. Exp Brain Res. 2009;194:219–31.CrossRefPubMedGoogle Scholar
  24. 24.
    Masia L, editor. Novel trends in rehabilitation of proprioception and actuation for assistive technology. Ubiquitous Robots and Ambient Intelligence [URAI], 2014 11th International Conference on; 2014.Google Scholar
  25. 25.
    Kim S, Hwang J, Xuan J, Jung YH, Cha H-S, Kim KH. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS One. 2014;9:e97501.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst Rev. 2016;12:CD010760.PubMedGoogle Scholar
  27. 27.
    Laut J, Porfiri M, Raghavan P. The present and future of robotic technology in rehabilitation. Curr Phys Med Rehabil Rep. 2016;4:312–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pazzaglia M, Molinari M. The embodiment of assistive devices—from wheelchair to exoskeleton. Phys Life Rev. 2016;16:163–75.CrossRefPubMedGoogle Scholar
  29. 29.
    Mokienko O, Lyukmanov RK, Chernikova L, Suponeva N, Piradov M, Frolov A. Brain–computer interface: the first experience of clinical use in Russia. Hum Physiol. 2016;42:24–31.CrossRefGoogle Scholar
  30. 30.
    Fung J, Richards CL, Malouin F, McFadyen BJ, Lamontagne A. A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol Behav. 2006;9:157–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim SI, Song I-H, Cho S, Kim IY, Ku J, Kang YJ, et al. Proprioception rehabilitation training system for stroke patients using virtual reality technology. Engineering in Medicine and Biology Society [EMBC], 2013 35th Annual International Conference of the IEEE; 2013.Google Scholar
  32. 32.
    Camargo C, Cardoso A, Lamounier E Jr, Camargo V, Cavalheiro G, Adriano O. Protocols of virtual rehabilitation for women in post-operative breast cancer stage, São Paulo, SP, Brazil: XII SBGames; 2013 October 16–18, pp. 61–64.Google Scholar
  33. 33.
    Abbruzzese G, Trompetto C, Mori L, Pelosin E. Proprioceptive rehabilitation of upper limb dysfunction in movement disorders: a clinical perspective. Front Hum Neurosci. 2014;8:961.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cho S, Ku J, Cho YK, Kim IY, Kang YJ, Jang DP, et al. Development of virtual reality proprioceptive rehabilitation system for stroke patients. Comput Methods Prog Biomed. 2014;113:258–65.CrossRefGoogle Scholar
  35. 35.
    Rand D, Kizony R, Weiss PTL. The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J Neurol Phys Ther. 2008;32:155–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Wu C-M, Hsu C-W, Lee T-K, Smith S. A virtual reality keyboard with realistic haptic feedback in a fully immersive virtual environment. Virtual Reality. 2017;21:19–29.CrossRefGoogle Scholar
  37. 37.
    Ruff J, Wang TL, Quatman-Yates CC, Phieffer LS, Quatman CE. Commercially available gaming systems as clinical assessment tools to improve value in the orthopaedic setting: a systematic review. Injury. 2015;46:178–83.CrossRefPubMedGoogle Scholar
  38. 38.
    Levinger P, Zeina D, Teshome AK, Skinner E, Begg R, Abbott JH. A real time biofeedback using Kinect and Wii to improve gait for post-total knee replacement rehabilitation: a case study report. Disabil Rehabil Assist Technol. 2016;11:251–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Baltaci G, Harput G, Haksever B, Ulusoy B, Ozer H. Comparison between Nintendo Wii Fit and conventional rehabilitation on functional performance outcomes after hamstring anterior cruciate ligament reconstruction: prospective, randomized, controlled, double-blind clinical trial. Knee Surg Sports Traumatol Arthrosc. 2013;21:880–7.CrossRefPubMedGoogle Scholar
  40. 40.
    da Silva Ribeiro NM, Ferraz DD, Pedreira É, Pinheiro Í, da Silva Pinto AC, Neto MG, et al. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top Stroke Rehabil. 2015;22:299–305.CrossRefPubMedGoogle Scholar
  41. 41.
    Dos Santos LRA, Carregosa AA, Masruha MR, Dos Santos PA, Coêlho MLDS, Ferraz DD, et al. The use of Nintendo Wii in the rehabilitation of poststroke patients: a systematic review. J Stroke Cerebrovasc Dis. 2015;24:2298–305.CrossRefPubMedGoogle Scholar
  42. 42.
    Bonnechère B, Jansen B, Omelina L, Van Sint J. The use of commercial video games in rehabilitation: a systematic review. Int J Rehabil Res. 2016;39:277–90.CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor MJ, Griffin M. The use of gaming technology for rehabilitation in people with multiple sclerosis. Mult Scler J. 2015;21:355–71.CrossRefGoogle Scholar
  44. 44.
    Barry G, van Schaik P, MacSween A, Dixon J, Martin D. Exergaming [XBOX Kinect™] versus traditional gym-based exercise for postural control, flow and technology acceptance in healthy adults: a randomised controlled trial. BMC Sports Sci Med Rehabil. 2016;8:25.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther. 2007;31:180–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Mourcou Q, Fleury A, Diot B, Vuillerme N, editors. iProprio: a Smartphone-based system to measure and improve proprioceptive function. Engineering in Medicine and Biology Society, 2016 IEEE 38th Annual International Conference of the; 2016.Google Scholar
  47. 47.
    Nowak DA, Glasauer S, Hermsdörfer J. How predictive is grip force control in the complete absence of somatosensory feedback? Brain. 2004;127:182–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Hermsdörfer J, Elias Z, Cole J, Quaney B, Nowak D. Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair. 2008;22:374–84.CrossRefPubMedGoogle Scholar
  49. 49.
    Rickards C, Cody F. Proprioceptive control of wrist movements in Parkinson’s disease. Reduced muscle vibration-induced errors. Brain. 1997;120:977–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Putzki N, Stude P, Konczak J, Graf K, Diener HC, Maschke M. Kinesthesia is impaired in focal dystonia. Mov Disord. 2006;21:754–60.CrossRefPubMedGoogle Scholar
  51. 51.
    Carey LM, Matyas TA, Oke LE. Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Arch Phys Med Rehabil. 1993;74:602–11.CrossRefPubMedGoogle Scholar
  52. 52.
    Kusoffsky A, Wadell I, Nilsson B. The relationship between sensory impairment and motor recovery in patients with hemiplegia. Scand J Rehabil Med. 1981;14:27–32.Google Scholar
  53. 53.
    Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. Sensory loss in hospital-admitted people with stroke: characteristics, associated factors, and relationship with function. Neurorehabil Neural Repair. 2008;22:166–72.CrossRefPubMedGoogle Scholar
  54. 54.
    Smith DL, Akhtar AJ, Garraway WM. Proprioception and spatial neglect after stroke. Age Ageing. 1983;12:63–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Taub E, Berman A. Avoidance conditioning in the absence of relevant proprioceptive and exteroceptive feedback. J Comp Physiol Psychol. 1963;56:1012.CrossRefPubMedGoogle Scholar
  56. 56.
    Piovesan D. A computational index to describe slacking during robot therapy. In: Progress in Motor Control. Cham: Springer; 2016. p. 351–65.CrossRefGoogle Scholar
  57. 57.
    Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1:5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Housman SJ, Le V, Rahman T, Sanchez RJ, Reinkensmeyer DJ, editors. Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. Rehabilitation Robotics, 2007 ICORR 2007 IEEE 10th International Conference on; 2007.Google Scholar
  59. 59.
    Caimmi M, Visani E, Digiacomo F, Scano A, Chiavenna A, Gramigna C, et al. Predicting functional recovery in chronic stroke rehabilitation using event-related desynchronization-synchronization during robot-assisted movement. Biomed Res Int. 2016;2016:7051340.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Özkul F, Erol BD, Badıllı DŞ, Inal S. Evaluation of elbow joint proprioception with RehabRoby: a pilot study. Acta Orthop Traumatol Turc. 2011;46:332–8.CrossRefGoogle Scholar
  61. 61.
    Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:5.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wilson JL, Slieker FJ, Legrand V, Murray G, Stocchetti N, Maas AI. Observer variation in the assessment of outcome in traumatic brain injury: experience from a multicenter, international randomized clinical trial. Neurosurgery. 2007;61:123–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:327–35.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin W. Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton Robot. 2003;15:35–51.CrossRefGoogle Scholar
  65. 65.
    Micera S, Sergi PN, Zaccone F, Cappiello G, Carrozza M, Dario P, et al., editors. A low-cost biomechatronic system for the restoration and assessment of upper limb motor function in hemiparetic subjects. Biomedical Robotics and Biomechatronics, 2006 BioRob 2006 The First IEEE/RAS-EMBS International Conference on; 2006.Google Scholar
  66. 66.
    Nef T, Mihelj M, Kiefer G, Perndl C, Muller R, Riener R, editors. ARMin-Exoskeleton for arm therapy in stroke patients. Rehabilitation Robotics, 2007 ICORR 2007 IEEE 10th International Conference on; 2007.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zeynep Bahadir Ağce
    • 1
  • Adnan Kara
    • 2
  • Baris Gulenc
    • 2
  1. 1.Department of Occupational Therapy, Faculty of Health SciencesUskudar UniversityİstanbulTurkey
  2. 2.Department of Orthopedics and Traumatology, Faculty of MedicineIstanbul Medipol UniversityIstanbulTurkey

Personalised recommendations