Posture, Kinesthesia, Foot Sensation, Balance, and Proprioception

  • John Nyland
  • Tiffany Franklin
  • Adam Short
  • Mahmut Calik
  • Defne Kaya


Foot region function has a direct relationship to patient independence with postural control, movement, and fall prevention. This chapter reviews foot-subtalar-ankle joint functional anatomy, foot mechanoreception, subtalar-ankle joint mechanoreception, foot-subtalar-ankle joint contributions to standing balance and neuromuscular postural control, and therapeutic interventions to enhance whole-body neuromuscular postural control through the foot.


Posture Kinesthesia Foot sensation Balance Proprioception Neuromuscular postural control 


  1. 1.
    Freeman MAR, Wyke B. Articular reflexes at the ankle joint: an electro-myographic study of normal and abnormal influences of ankle-joint mechanoreceptors upon reflex activity in the leg muscles. Brit J Surg. 1967;54:990–1001.CrossRefPubMedGoogle Scholar
  2. 2.
    Hogervorst T, Brand RA. Mechanoreceptors in joint function. J Bone Joint Surg Am. 1998;80:1365–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Johansson H, Sjolander P, Sojka P. A sensory role for the cruciate ligaments. Clin Orthop Relat Res. 1991;268:161–78.Google Scholar
  4. 4.
    Solomonow M, Lewis J. Reflex from the ankle ligaments of the feline. J Electromyogr Kinesiol. 2002;12:193–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Pyar E. Der heutige stand der gelenkchirugie. Arch Klin Chir. 1900;48:404–51.Google Scholar
  6. 6.
    McKeon P, Hertel J, Bramble D, et al. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49:290.CrossRefPubMedGoogle Scholar
  7. 7.
    Stagni RA, Leardini A, O’Connor JJ, et al. Role of passive structures in the mobility and stability of the human subtalar joint: a literature review. Foot Ankle Int. 2003;24:402–209.CrossRefPubMedGoogle Scholar
  8. 8.
    Perry SD, Mcllroy WE, Maki BE. The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res. 2000;877:401–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Meyer PF, Oddsson LI, De Luca CJ. The role of plantar cutaneous sensation in unperturbed stance. Exp Brain Res. 2004;156:505–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Hennig EM, Sterzing T. Sensitivity mapping of the human foot: thresholds at 30 skin locations. Foot Ankle Int. 2009;30:986–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Hass CJ, Bishop MD, Doidge D, et al. Chronic ankle instability alters central organization of movement. Am J Sports Med. 2010;38:829–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Kennedy PM, Inglis JT. Distribution and behavior of glaborous cutaneous receptors in the human foot sole. J Physiol. 2002;538:995–1002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Prochazka A, Trend P, Hulliger M, et al. Ensemble proprioceptive activity in the cat step cycle: towards a representative look-up chart. Prog Brain Res. 1989;80:61–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Michelson JD, Hutchins C. Mechanoreceptors in human ankle ligaments. J Bone Joint Surg Br. 1995;77:219–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Wyke B. Articular neurology: a review. Physiotherapy. 1972;58:94–9.PubMedGoogle Scholar
  16. 16.
    Wu X, Song W, Zheng C, et al. Morphological study of mechanoreceptors in collateral ligaments of the ankle joint. J Orthop Surg Res. 2015;10:92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cauna N, Mannigan G. Developmental and post-natal changes of distal Pacinian corpuscles in three human hands. J Anat. 1959;93:271.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cauna N, Mannigan G. The structure of human digital Pacinian corpuscle (corpuscular lamellosa) and its functional significance. J Anat. 1958;92:1–20.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Goldman F, Gardner R. Pacinian corpuscles as a cause for metatarsalgia. J Am Podiatry Assoc. 1980;70:561–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Moraes MRB, Cavalcante LC, Leite JAD, et al. Histomorphometric evaluation of mechanoreceptors and free nerve endings in human lateral ankle ligaments. Foot Ankle Int. 2008;29:87–90.CrossRefPubMedGoogle Scholar
  21. 21.
    Rein S, Hagert E, Hanisch U, et al. Immunohistochemical analysis of sensory nerve endings in ankle ligaments: a cadaver study. Cells Tissues Organs. 2013;197:64–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Rein S, Hanisch U, Zwipp H, et al. Comparative analysis of inter- and intraligamentous distribution of sensory nerve endings in ankle ligament: a cadaver study. Foot Ankle Int. 2013;34:1017–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Takebayashi T, Yamashita T, Minaki Y, et al. Mechanosensitive afferent units in the lateral ligaments of the ankle. J Bone Joint Surg Br. 1997;79:490–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Del Valle ME, Harwin SF, Maestro A, et al. Immunohistochemical analysis of mechanreceptors in the human posterior cruciate ligament: a demonstration of its proprioceptive role and clinical relevance. J Arthroplast. 1998;13:916–22.CrossRefGoogle Scholar
  25. 25.
    Morisawa Y. Morphological study of mechanoreceptors on the coracoacromial ligament. J Orthop Sci. 1988;3:102–10.CrossRefGoogle Scholar
  26. 26.
    Tomita K, Berger EJ, Berger RA, et al. Distribution of nerve endings in the human dorsal radiocarpal ligament. J Hand Surg Am. 2007;32:466–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Konradsen L. Sensori-motor control of the uninjured and injured human ankle. J Electromyogr Kinesiol. 2002;12:199–203.CrossRefPubMedGoogle Scholar
  28. 28.
    Bessou P, Bessou M, Dupui PH, et al. Le pied organe de l’equilibre et posture. Parie: Frison-Roches; 1996. p. 21–32.Google Scholar
  29. 29.
    Burcal CJ, Wikstrom EA. Plantar cutaneous sensitivity with and without cognitive loading in people with chronic ankle instability, copers, and uninjured controls. J Orthop Sports Phys Ther. 2016;46:270–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Ribot-Ciscar E, Hospod V, Roll JP, et al. Fusimotor drive may adjust spindle feedback to task requirements in humans. J Neurophysiol. 2009;101:633–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu G, Chiang JH. The significance of somatosensory stimulations to the human foot in the control of postural reflexes. Exp Brain Res. 1997;114:163–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu G, Haugh L, Sarnow M, et al. A neural network approach to motor-sensory relations during postural disturbance. Brain Res Bull. 2006;69:365–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Ferran NA, Maffuli N. Epidemiology of sprains of the lateral ankle ligament complex. Foot Ankle Clin. 2006;11:659–62.CrossRefPubMedGoogle Scholar
  34. 34.
    Simoneau GG, Degner RM, Kramper CA, et al. Changes in ankle joint proprioception resulting from strips of athletic tape applied over the skin. J Athl Train. 1997;32:141–7.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Halasi T, Kynsburg A, Ta’lley A, et al. Changes in joint position sense after surgically treated chronic lateral ankle instability. Br J Sports Med. 2005;39:818–24.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Alexander RMN, Vernon A. The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud. 1975;1:115–23.Google Scholar
  37. 37.
    Rack PMH, Ross HF, Thilmann AF, et al. Reflex responses at the human ankle: the importance of tendon compliance. J Physiol. 1983;344:503–24.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat. 2006;208:753–68.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Banks RW, Hulliger M, Saed HH, et al. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings. J Anat. 2009;214:859–87.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bergenheim M, Johansson H, Pedersen J. The role of the gamma-system for improving information transmission in populations of Ia afferents. Neurosci Res. 1995;23:207–15.CrossRefPubMedGoogle Scholar
  41. 41.
    Matthews BHC. Nerve endings in mammalian muscle. J Physiol. 1933;78:1–53.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Marchand-Pauvert V, Nicolas G, Marque P, et al. Increase in group II excitation from ankle muscles to thigh motoneurones during human standing. J Physiol. 2005;566:257–71.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Simonetta-Moreau M, Marque P, Marchand-Pauvert V, et al. The pattern of excitation of human lower limb motoneurons by probable group II muscle afferents. J Physiol. 1999;517:287–300.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Marchand-Pauvert V, Simonetta-Moreau M, Pierrot-Deseilligny E. Cortical control of spinal pathways mediating group II excitation to human thigh motoneurons. J Physiol. 1999;517:301–13.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Barbeau H, Marchand-Pauvert V, Meunier S, et al. Posture-related changes in heteronymous recurrent inhibition from quadriceps to ankle muscles in humans. Exp Brain Res. 2000;130:345–61.CrossRefPubMedGoogle Scholar
  46. 46.
    Kavounoudias A, Roll R, Roll JP. The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport. 1998;9:3247–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Needle AR, Swanik CB, Farquhar WB, et al. Muscle spindle traffic in functionally unstable ankles during ligamentous stress. J Athl Train. 2013;48:192–202.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Grigg P. Peripheral neural mechanisms in proprioception. J Sport Rehabil. 1994;3:2–17.CrossRefGoogle Scholar
  49. 49.
    Courtney C, Rine RM, Kroll P. Central somatosensory changes and altered muscle synergies with anterior cruciate ligament deficiency. Gait Posture. 2005;22:69–74.CrossRefPubMedGoogle Scholar
  50. 50.
    Karlsson J, Andreasson GO. The effect of external ankle support in chronic lateral ankle joint instability. An electromyographic study. Am J Sports Med. 1992;20(3):257–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Han J, Anson J, Waddington G, et al. The role of ankle proprioception for balance control in relation to sports performance and injury. Biomed Res Int. 2015;2015:842804. Scholar
  52. 52.
    Mahieu NN, McNair P, De Muynck M, et al. Effect of static and ballistic stretching on the muscle-tendon tissue properties. Med Sci Sports Exerc. 2007;39:494–501.CrossRefPubMedGoogle Scholar
  53. 53.
    Edama M, Kubo M, Onishi H, et al. Differences in the degree of stretching applied to Achilles tendon fibers when the calcaneus is pronated or supinated. Foot Ankle Online J. 2016;9(3):5.Google Scholar
  54. 54.
    Hertel J, Braham R, Hale S, et al. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability. J Orthop Sports Phy Ther. 2006;36(3):131–7.CrossRefGoogle Scholar
  55. 55.
    Clanton T, Matheny L, Jarvis H, et al. Return to play in athletes following ankle injuries. Sports Health. 2012;4(6):471–4.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hale S, Hertel J, Olmsted-Kramer L. The effect of a 4-week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability. J Orthop Sports Phys Ther. 2007;37(6):303–11.CrossRefPubMedGoogle Scholar
  57. 57.
    Goble DJ, Coxon JP, Van Impe A, et al. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. J Neurosci. 2011;31:16344–52.CrossRefPubMedGoogle Scholar
  58. 58.
    Lephart S, Pincivero D, Giraldo J, et al. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997;25(1):130–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Matsusaka N, Yokoyama S, Tsurusaka T, et al. Effects of ankle disk training combined with tactile stimulation to the leg and foot on functional instability of the ankle. Am J Sports Med. 2001;29(1):25–30.CrossRefPubMedGoogle Scholar
  60. 60.
    Bernier J, Perrin D. Effect of coordination training on proprioception of the functionally unstable ankle. J Orthop Sports Phys Ther. 1998;27(4):264–75.CrossRefPubMedGoogle Scholar
  61. 61.
    Docherty C, Arnold B, Gansneder B, et al. Functional-performance deficits in volunteers with functional ankle instability. J Athl Train. 2005;40(1):30–4.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Nakasa T, Fukuhara K, Adachi N, et al. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error. Arch Orthop Trauma Surg. 2008;128(5):445–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Baray AL, Philippot R, Farizon F, et al. Assessment of joint position sense deficit, muscular impairment and postural disorder following hemi-Castaing ankle ligamentoplasty. Orthop Traumatol Surg Res. 2014;100:271–4. Scholar
  64. 64.
    Kaya D, Doral MN, Nyland J, et al. Proprioception level after endoscopically guided percutaneous Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1238–44. Scholar
  65. 65.
    Mezzarobba S, Bortolato S, Giacomazzi A, et al. Percutaneous repair of Achilles tendon ruptures with Tenolig: quantitative analysis of postural control and gait pattern. Foot (Edinb). 2012;22(4):303–9. Scholar
  66. 66.
    Nakasa T, Adachi N, Shibuya H, et al. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus. J Foot Ankle Surg. 2013;52(3):331–4. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John Nyland
    • 1
  • Tiffany Franklin
    • 1
  • Adam Short
    • 2
  • Mahmut Calik
    • 3
  • Defne Kaya
    • 3
  1. 1.Kosair Charities College of Health and Natural SciencesSpalding UniversityLouisvilleUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Physiotherapy and Rehabilitation, Faculty of Health SciencesUskudar UniversityIstanbulTurkey

Personalised recommendations