Skip to main content

Plasma Bound States in Grand Canonical and Mixed Representations

  • Chapter
  • First Online:
Quantum Statistics of Dense Gases and Nonideal Plasmas

Abstract

Plasmas with deep bound states are not well described by density expansions. Here fugacity expansions are a very useful alternative to density expansions. The quantum-statistical theory is formulated in the grand canonical ensemble. This provides representations of the pressure and the densities in terms of the fugacities, which serve as implicit variables. This has already been demonstrated for real gases in Chap. 2, where we showed the equivalence with chemical descriptions. Fugacity expansions are, in principle, completely equivalent to density expansions. They are just a useful alternative, but with a quite different range of convergence, and different applications. For systems with deep bound states, fugacity expansions are more quickly convergent and very useful for EOS calculations. Furthermore, we develop mixed representations which combine the advantages of density and fugacity expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Alastuey, V. Ballenegger, Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions. Contrib. Plasma Phys. 50, 4653 (2010)

    Article  Google Scholar 

  • A. Alastuey, V. Ballenegger, Contrib. Plasma Phys. 52, 95 (2012)

    Google Scholar 

  • A. Alastuey, A. Perez, Virial expansion of the equation of state of a quantum plasma. Europhys. Lett. 20, 19 (1992)

    Article  ADS  Google Scholar 

  • A. Alastuey, V. Ballenegger, F. Cornu et al., Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory. J. Stat. Phys. 130, 1119–1176 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the equation of state of plasmas. Phys. Rev. E 62, 047101–1 (2015)

    Google Scholar 

  • S. Arndt, W.D. Kraeft, J. Seidel, Phys. Stat. Sol. B 194, 601 (1996)

    Google Scholar 

  • V. Ballenegger, Ann. Phys. (Berlin) 254, 103 (2012)

    Google Scholar 

  • G.P. Bartsch, Ebeling, Quantum statistical fugacity expansions for partially ionized plasmas in equilibrium, Contr. Plasma Phys. 11, 393–403 (1971); see also Contrib. Plasma Phys. 15, 25–32 (1975)

    Google Scholar 

  • H.A. Bethe, E.E. Salpeter, A relativistic equation for bound state problems. Phys. Rev. 82, 309 (1951)

    MathSciNet  MATH  Google Scholar 

  • D. Beule, W. Ebeling, A. Förster, H. Juranek, S. Nagel, R. Redmer, G. Röpke, Equation of state for hydrogen below 10 000 K: from the fluid to the plasma. Phys. Rev. B 59, 14177 (1999)

    Article  ADS  Google Scholar 

  • D. Beule, W. Ebeling, R. Redmer, G. Röpke, Electrical conductivity in dense hydrogen fluid and metal plasmas. Control. Plasma Phys. 39, 25–28 (1999)

    Google Scholar 

  • D. Beule,W. Ebeling, A. Förster, H. Juranek, R. Redmer, G. Röpke, Isentropes and Hugoniots for dense hydrogen and deuterium. Phys. Rev. E 63, 060202 R (2001)

    Google Scholar 

  • L.S. Brown, L.G. Yaffe, Effective field theory of highly ionized plasmas. Phys. Rep. 340, 1 (2001)

    Article  ADS  MATH  Google Scholar 

  • W. Däppen, Accurate and versatile equations of state for the sun and sunlike stars. Astrophys. Space Sci. 328, 139146 (2010)

    Article  MATH  Google Scholar 

  • W. Däppen, D. Mihalas, D.G. Hummer, Astrophys. J. 332, 261 (1988)

    Article  ADS  Google Scholar 

  • H.E. DeWitt, M. Schlanges, A.Y. Sakakura, W.D. Kraeft, Low density expansion of the equation of state for a quantum electron gas. Phys. Lett. A 197, 326 (1995)

    Article  ADS  Google Scholar 

  • M.W.C. Dharma-Wardana, F. Perrot, Level shifts, continuum lowering, and the mobility edge in dense plasmas. Phys. Rev. A 45, 5883 (1992)

    Article  ADS  Google Scholar 

  • W. Ebeling, Statistical derivation of the mass action law of interacting gases and plasmas. Physica 73, 573–584 (1974)

    Article  ADS  Google Scholar 

  • W. Ebeling, Free energy and ionization of dense plasma of light elements, Contr. Plasma Phys. 29, 238–242 (1989); 30, 553–561 (1990)

    Google Scholar 

  • W. Ebeling, H.D. Hoffmann, G. Kelbg, Quantenstatistik des Hochtemperaturplasmas. Contrib. Plasma Phys. 7, 233–248 (1967)

    Google Scholar 

  • W. Ebeling, W.-D. Kraeft, K. Kilimann, D. Kremp, Coexisting phases in an electron–hole plasma, Phys. Stat. Sol. 78, 241–253 (1976)

    Google Scholar 

  • W. Ebeling, W.-D. Kraeft, D. Kremp, Nonideal Plasmas (Proc. ICPIG XIII, Invited papers, Berlin, 1977)

    Google Scholar 

  • W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976) (Extended Russ. translation Mir, Moscow, 1979)

    Google Scholar 

  • W. Ebeling, W.D. Kraeft, D. Kremp, G. Röpke, Energy levels in hydrogen plasmas and the Planck–Larkin partition function–a comment. Astrophys. J. 290, 24–27 (1985)

    Article  ADS  Google Scholar 

  • W. Ebeling, A. Förster, R. Redmer, T. Rother, M. Schlanges, ICPIG 18, Invited Lectures, Univ. of Wales (1987)

    Google Scholar 

  • W. Ebeling, Free energy and ionization in dense plasmas of the light elements. Control. Plasma Phys. 30, 53–561 (1990)

    Google Scholar 

  • W. Ebeling, S. Hilbert, On Saha’s equation for partially ionized plasmas and Onsager’s bookkeeping rule, Eur. Phys. J. D 20, 93–101 (2002)

    Google Scholar 

  • W. Ebeling, S. Hilbert, H. Krienke, On Bjerrum’s mass action law for electrolytes and Onsager’s bookkeeping rule. J. Mol. Liq. 96/97, 409–423 (2002)

    Google Scholar 

  • W. Ebeling, H. Hache, H. Juranek, R. Redmer, G. Röpke, Pressure ionization and transitions in dense hydrogen. Contrib. Plasma Phys. 45, 160–167 (2005)

    Article  ADS  Google Scholar 

  • W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz, G. Röpke, The influence of Pauli blocking effects on the properties of dense hydrogen. J. Phys. A Math. Theor. 42, 214033 (2009), arXiv:0810.3336v2

  • W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz, G. Röpke, Pauli blocking effects and Mott transition in dense hydrogen. In: Redmer et al. (2010)

    Google Scholar 

  • W. Ebeling, W.D. Kraeft, G. Röpke, Bound states in Coulomb systems—old problems and new solutions. Contrib. Plasma Phys. 52, 7–16 (2012); Ann. Physik (Berlin) 524, 311–326 (2012)

    Google Scholar 

  • W. Ebeling, Work of Baimbetov on nonideal plasmas and developments, Contr. Plasma Phys. 56, 163–175 (2016)

    Google Scholar 

  • G. Ecker, W. Weizel, Zustandssumme und effektive Ionisierungsspannung eines Atoms im Inneren des Plasmas. Ann. Phys. (Leipzig) 452, 126 (1956)

    Google Scholar 

  • M. Fisher, D.M. Zuckerman, Exact thermodynamic formulation of chemical association. J. Chem. Phys. 109, 7961–7981 (1998)

    Article  ADS  Google Scholar 

  • H.L. Friedman, Ionic Solution Theory (Interscience, New York, London, 1962)

    Google Scholar 

  • H.L. Friedman, W. Ebeling, Theory of a fluid of interacting and reacting particles. Rostocker Physikal. Manuskripte 4, 35–51 (1979)

    Google Scholar 

  • A. Förster, T. Kahlbaum, W. Ebeling, Equation of state and pase diagram of fluid helium in the region of partial ionization. Laser Part. Beams 10, 253–262 (1992)

    Google Scholar 

  • H.C. Graboske, D.J. Harwood, F.J. Rogers, Phys. Rev. 186, 210 (1969)

    Article  ADS  Google Scholar 

  • H.R. Griem, Spectral Line Broadening in Plasmas (Academic Press, New York, 1974)

    Google Scholar 

  • T.L. Hill, Statistical Mechanics (Mc Graw Hill, New York, 1956). Russ. transl, Moskva, 1960

    MATH  Google Scholar 

  • S. Ichimaru, Statistical Plasma Physics (Addison-Wesley, Redwood City, 1992)

    Google Scholar 

  • G. Kelbg, W. Ebeling, Quantum statistics of thermal plasmas in equilibrium (in Russ.), 1–2, printed by Inst. Theor. Phys. Ukrain. Acad. Sci, Kiev (1970)

    Google Scholar 

  • T. Kahlbaum, The quantum-diffraction term in the free energy for Coulomb plasma, effective potential approach. J. Phys. France 10, 5-455 (2000)

    Google Scholar 

  • A.L. Khomkin, I.A. Mulenko: High Temp. 41, 275 (2003), arXiv.org/physics/0305118

  • A.L. Khomkin, A.S. Shumikhin, Features of the chemical models of nonideal atomic plasma at high temperatures. Plasma Phys. Rep. 34, 251–256 (2008)

    Article  ADS  Google Scholar 

  • A. Khomkin, A. Shumikhin, I. Mulenko, Basic chemical models of partially ionized plasma, Czech. J. Phys. 54, Suppl. C 143, 1b (2004)

    Google Scholar 

  • K. Kilimann, W. Ebeling, Energy gap and line shifts for H-like ions in dense plasmas. Z. Naturforsch. A 45, 613–617 (1990)

    Google Scholar 

  • Y.L. Klimontovich, Statistical theory of nonequilibrium processes in plasmas, Izdat MGU 1964 (Engl. Pergamon, Oxford, 1967)

    Google Scholar 

  • Y.L. Klimontovich, Statistical Physics, In Russ. (Nauka, 1982); Engl. (Harwood, New York, 1986)

    Google Scholar 

  • W.D. Kraeft, D. Kremp, W. Ebeling, Complex representations of the quantum statistical second virial coefficient. Phys. Lett. A 29, 466 (1969)

    Article  ADS  Google Scholar 

  • W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Pergamon Press, New York, 1986)

    Book  Google Scholar 

  • W.-D. Kraeft, J. Vorberger, D.O. Gericke, M. Schlanges, Thermodynamic functions for plasmas beyond Montroll-Ward. Contrib. Plasma Phys. 47, 253 (2007)

    Article  ADS  Google Scholar 

  • D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    Google Scholar 

  • L.P. Kudrin, Statistical Physics of Plasmas (in Russ.) (Nauka, Moskva, 1974)

    Google Scholar 

  • J.E. Mayer, Theory of ionic solutions. J. Chem. Phys. 18, 1426–1436 (1950)

    Article  ADS  Google Scholar 

  • E. Montroll, J. Ward, Quantum statistics of interacting particles. Phys. Fluids 1, 55 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Redmer, B. Holst, F. Hensel (eds.), Metal to nonmetal transitions (Springer, Berlin, 2010)

    MATH  Google Scholar 

  • F.J. Rogers, Statistical mechanics of Coulomb gases of arbitrary charge. Phys. Rev. A 10, 2441–2456 (1974)

    Google Scholar 

  • F.J. Rogers, Statistical mechanics of Coulomb gases of arbitrary charge. Phys. Rev. A 38, 5007 (1988)

    Google Scholar 

  • G. Röpke, K. Kilimann et al., Phys. Lett. A 69, 329 (1978)

    Google Scholar 

  • D. Saumon, G. Chabrier, Phys. Rev. Lett. 62, 2397 (1989)

    Article  ADS  Google Scholar 

  • J. Seidel, S. Arndt, W.D. Kraeft, Energy spectrum of hydrogen atoms in dense plasmas. Phys. Rev. E 52, 5387 (1995)

    Article  ADS  Google Scholar 

  • A.N. Starostin, V.C. Roerich, R.M. More, How correct is the EOS of weakly nonideal hydrogen plasmas? Contrib. Plasma Phys. 43, 369–372 (2003)

    Article  ADS  Google Scholar 

  • O. Theimer , P. Kepple, Statistical Mechanics of a Partially Ionized Hydrogen Plasma, Phys. Rev. A 1, 957 (1970)

    Google Scholar 

  • A.A. Vedenov, A.I. Larkin, Equation of state of plasmas (in Russ.). Zh. eksp. teor. Fiz. 36, 1133 (1959)

    MATH  Google Scholar 

  • J. Vorberger, D.O. Gericke, Phys. Plasmas 16, 082702 (2009)

    Article  ADS  Google Scholar 

  • J. Vorberger, D.O. Gericke, Th Bornath, M. Schlanges, Phys. Rev. E 81, 046404 (2010)

    Article  ADS  Google Scholar 

  • J. Vorberger, D.O. Gericke, W.D. Kraeft, Equation of state for high density hydrogen, Poster SCCS 2011, (2011), arXiv:1108.4826

  • V.S. Vorobjov, I.A. Mulenko, A.L. Khomkin, The importance of excited states in the thermodynamics of partially ionized plasma, High Temp. 38, 509–514 (2000), Teplofiz. Vyssokikh Temp. 38, 533–538 (2000)

    Google Scholar 

  • R. Zimmermann, K. Kilimann, W.D. Kraeft, D. Kremp, G. Röpke, Phys. Stat. Sol. (b) 90, 175 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Ebeling .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebeling, W., Fortov, V.E., Filinov, V. (2017). Plasma Bound States in Grand Canonical and Mixed Representations . In: Quantum Statistics of Dense Gases and Nonideal Plasmas. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-66637-2_5

Download citation

Publish with us

Policies and ethics