Skip to main content

Coulomb Correlations and EOS of Nondegenerate Nonideal Plasmas

  • Chapter
  • First Online:
Quantum Statistics of Dense Gases and Nonideal Plasmas

Abstract

As pointed out in Chaps. 1 and 3, the correlations in classical Coulomb systems such as electrolytes and quasi-classical plasmas were first studied by Milner, Debye, Hückel, Wigner, and others. Strictly speaking, there is no classical statistical theory of point charges, due to several divergencies which show when Debye’s limiting laws are not applicable. The quantum-statistical theory of correlations in Coulomb systems is due to the work of Macke, Gell-Man, Brueckner, Bohm, Pines, Nozieres, Montroll, Ward, Klimontovich, Silin, Vedenov, Larkin, DeWitt, Kelbg, and others (Vedenov 1959; Vedenov and Larkin 1959; DeWitt 1962; Kelbg 1963, 1964; Ebeling et al. 1968; Ebeling et al. 1976, Klimontovich 1984, 1986). The most important results were obtained in different research centers, one of them founded in the 1960s by Kelbg in Rostock (Kelbg 1963, 1964; Ebeling et al. 1968; Ebeling et al. 1976; Kraeft et al. 1986). Field-theoretical approaches were developed to solve the problem of quantum screening by Montroll and Ward (1958) and by Vedenov and Larkin (1959). The Montroll–Ward method was further developed by DeWitt et al. (for the main results see DeWitt 1962; DeWitt et al. 1995; Riemann et al. 1995). An approach based on Feynman–Kac methods was developed by Alastuey and Perez et al. (see, e.g., Alastuey et al. 1992, 1996, 2008, 2015). For exact results see Lieb and Seiringer (2010), here we mainly follow the approach of the Kelbg school, but compare in detail with the results of other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Alastuey, Breakdown of Debye screening in quantum Coulomb systems and van der Waals forces. Phys. A 263, 271–283 (1999)

    Article  Google Scholar 

  • A. Alastuey, PhA Martin, Breakdown of Debye screening in quantum plasmas. Europhys. Lett. 6, 385 (1988). Phys. Rev. A 40, 6485 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Alastuey, A. Perez, Virial expansion of the equation of state of a quantum plasma. Europhys. Lett. 20, 19–24 (1992)

    Article  ADS  Google Scholar 

  • A. Alastuey, A. Perez, Virial expansions for quantum plasmas: Fermi-Bose statistics. Phys. Rev. E 53, 5714 (1996)

    Article  ADS  Google Scholar 

  • A. Alastuey, V. Ballenegger, Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions. Contr. Plasma Phys. 50, 46–53 (2010)

    Article  ADS  Google Scholar 

  • A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the equation of state of plasmas. Phys. Rev. E 92, 047101 (2015)

    Article  ADS  Google Scholar 

  • A. Alastuey, V. Ballenegger, F. Cornu, PhA Martin, Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory. J. Stat. Phys. 130, 1119–1176 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V. Ballenegger, A. PhA Martin, Alastuey. J. Stat. Phys. 108, 169 (2002)

    Article  Google Scholar 

  • A.A. Barker, Radial distribution functions for a hydrogenous plasma in equilibrium. Phys. Rev. 171, 168 (1968); 179, 129–134 (1969)

    Google Scholar 

  • N.V. Brilliantov, Contrib. Plasma Phys. 38, 489 (1998) (ArXiv physics 1998)

    Google Scholar 

  • L.S. Brown, L.G. Yaffé, Effective field theory of highly ionized plasmas, Phys. Reports 340, 1 (2001), arXiv:physics/9911055

  • E.G.D. Cohen, T.J. Murphy, Phys. Fluids 12, 1404 (1969)

    Article  ADS  Google Scholar 

  • F. Cornu, Exact algebraic tails of static correlations in quantum plasmas. Phys. Rev. Lett. 78, 1464 (1997)

    Article  ADS  Google Scholar 

  • F. Cornu, PhA Martin, Electron gas beyond random-phase approximations: algebraic screening. Phys. Rev. A 40, 4893 (1991)

    Article  ADS  Google Scholar 

  • H.-J. Czerwon, Diploma thesis, University Rostock 1972, see also H. Krienke et al., Wiss. Z. University Rostock MNR 24, 5 (1975)

    Google Scholar 

  • H.E. DeWitt, Evaluation of the quantum-mechanical ring sum. J. Math. Phys. 3(6), 1216 (1962); 7, 616 (1966)

    Google Scholar 

  • H.E. DeWitt, Asymptotic form of the classical one-component plasma. Phys. Rev. A 14, 1290–1293 (1976)

    Article  ADS  Google Scholar 

  • W. Ebeling, Equilibrium statistics of systems with bound states, in Proceedings of the Van der Waals Centennial Conference on statistical mechanics, ed. by C. Prins (North Holland Publication, Amsterdam, 1973), pp. 83–84

    Google Scholar 

  • W. Ebeling, Quantum statistics of bound states in plasmas. Ann. Phys. (Leipzig) 19, 104 (1967), 21, 315 (1968); 22, 383–391, 392–401 (1969)

    Google Scholar 

  • W. Ebeling, Physica, EOS and Saha equation of plasmas, 38, 378 (1968); 40, 290 (1968); 43, 293 (1969); 73, 573 (1974)

    Google Scholar 

  • W. Ebeling, Physica A 130, 523 (1985)

    Article  Google Scholar 

  • W. Ebeling, Correlation functions and thermodynamic potentials for nonideal plasmas. Contr. Plasma Phys. 33(5/6), 492–502 (1993)

    Article  ADS  Google Scholar 

  • W. Ebeling, S. Hilbert, On Saha’s equation for partially ionized plasma and Onsager’s bookkeeping rule. Eur. J. Phys. D 20, 93–101 (2002)

    Article  ADS  Google Scholar 

  • W. Ebeling, F. Schautz, Simulations of the quantum electron gas using momentum-dependent potentials. Phys. Rev. E 56, 3498 (1997)

    Article  ADS  Google Scholar 

  • W. Ebeling, H.D. Hoffmann, G. Kelbg, Quantenstatistik des Hochtemperaturplasma im thermodynamischen Gleichgewicht. Contr. Plasma Phys. 7, 233–248 (1967)

    Google Scholar 

  • W. Ebeling, W.D. Kraeft, D. Kremp, Quantum statistical second virial coefficient for real gases and plasmas. Contr. Plasma Phys. 10, 237–263 (1970)

    Google Scholar 

  • W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976) (Extended Russ. translation Mir, Moscow, 1979)

    Google Scholar 

  • W. Ebeling, S. Hilbert, H. Krienke, On Bjerrum’s mass action law for electrolytes and Onsager’s bookkeeping rule. J. Mol. Liq. 96(97), 409–423 (2002)

    Article  Google Scholar 

  • W. Ebeling, H. Hache, M. Spahn, Thermodynamics of ionization and dissociation in hydrogen. Eur. Phys. D 23, 265–272 (2003)

    Article  ADS  Google Scholar 

  • W. Ebeling, G.E. Norman, A.A. Valuev, I. Valuev, Contrib. Plasma Phys. 39, 61 (1999)

    Article  ADS  Google Scholar 

  • W. Ebeling, A. Filinov, M. Bonitz, V. Filinov, T. Pohl, The method of effective potentials in the quantum-statistical theory of plasmas. J. Phys. A Math. Gen. 39, 4309–4317 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • W. Ebeling, The work of Baimbetov on nonideal plasmas and some recent developments. Contr. Plasma Phys. 56(3–4), 163–175 (2016)

    Article  ADS  Google Scholar 

  • H. Falkenhagen, Theorie der Electrolyte, Teubner Leipzig (1971)

    Google Scholar 

  • H. Falkenhagen et al., I. Equilibrium properties of ionized dilute electrolytes, II. Mass transport properties, in: Ionic interactions, ed. by S. Petrucci, (Academic Press, New York, 1971)

    Google Scholar 

  • R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (Graw-Hill, New York, 1965)

    MATH  Google Scholar 

  • V.S. Filinov, V.E. Fortov, M. Bonitz, D. Kremp, Phys. Lett. A 274, 228 (2000)

    Article  ADS  Google Scholar 

  • V.S. Filinov, M. Bonitz, W. Ebeling, V.E. Fortov, Plasma Phys. Control Fusion 43, 743 (2001)

    Article  ADS  Google Scholar 

  • A.V. Filinov, M. Bonitz, W, Ebeling, Improved Kelbg potential for correlated Coulomb systems. J. Phys. A Math. Gen. 36 5957–5962 PII: S0305-4470(03) 55108-3 (2003)

    Google Scholar 

  • A.V. Filinov et al., Phys. Rev. E 70, 046411 (2004)

    Article  ADS  Google Scholar 

  • V.S. Filinov, M. Bonitz, V.E. Fortov, W. Ebeling, H. Fehske, D. Kremp, W.D. Kraeft, V. Bezkrovniy, P. Levashov, Monte Carlo simulations of dense quantum plasmas. J. Phys. A Math. Gen. 38, 1–9 (2005)

    Article  Google Scholar 

  • V.E. Fortov, Extreme States of Matter (FizMatGis, Moskva, 2009). (in Russian)

    Google Scholar 

  • V.E. Fortov, Extreme States of Matter: on Earth and in the Cosmos (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  • A. Förster, T. Kahlbaum, W. Ebeling, Equation of state and phase diagram of fluid helium in the region of partial ionization. Laser Part. Beams 10, 253–262 (1992)

    Article  ADS  Google Scholar 

  • H.L. Friedman, Ionic Solution Theory (Interscience, New York, London, 1962)

    Google Scholar 

  • P.E. Grabowski, A. Markmann, M.S. Murillo, C.A. Fichtl, D.F. Richards, V.S. Batista, F.R. Graziani, I.V. Morozov, I.A. Valuev, Wave packet spreading and localization in electron-nuclear scattering. Phys. Rev. E 87, 063104 (2013)

    Article  ADS  Google Scholar 

  • R.I. Guernsey, Phys. Fluids 5, 322 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • J.P. Hansen, I.R. McDonald, Phys. Rev. A 23, 2041 (1981)

    Article  ADS  Google Scholar 

  • J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic Press, New York, 2006)

    MATH  Google Scholar 

  • J.-P. Hansen, I.R. McDonald, E.L. Pollock, Phys. Rev. A 11, 1025 (1975)

    Article  ADS  Google Scholar 

  • E.J. Heller, J. Chem. Phys. 62, 1544 (1975)

    Article  ADS  Google Scholar 

  • P.C. Hemmer, H. Holden, S. Kjelstrup Ratkje, The Collected Works of Lars Onsager (with commentary) (World Scientific, Singapore, 1996)

    Google Scholar 

  • H.J. Hoffmann, G. Kelbg, Ann. Physik (Leipzig) 17, 356 (1966); 18, 186 (1967); 19, 186 (1967)

    Google Scholar 

  • H.J. Hoffmann, W. Ebeling, On the EOS of Fully Ionized Quantum Plasmas. Physica 39, 593 (1968); Contr. Plasma Phys. 8, 43 (1968)

    Google Scholar 

  • S. Ichimaru, Statistical Plasma physics (Addison-Wesley, Redwood City, 1992)

    Google Scholar 

  • B. Jakob, P.-G. Reinhard, C. Toepffer, G. Zwicknagel. Phys. Rev. E 76, 036406 (2007); L.P. Kadanoff, L.P. Baym, Quantum Statistical Mechanics. (New York, 1962)

    Google Scholar 

  • T. Kahlbaum, The second virial coefficient for charged particle systems, in Dynamik, Evolution, Strukturen, ed. by J. Freund (Verlag Dr. Köster, Berlin, 1996)

    Google Scholar 

  • T. Kahlbaum, Calculation of the virial expansion for quantum plasmas, in Strongly Coupled Coulomb Systems, eds. by G.J. Kalman, J.M. Rommel, K. Blagoev (Plenum, New York and London, 1998)

    Google Scholar 

  • T. Kahlbaum, Advances in the calculation of virial expansions for quantum plasmas up to third order in the density, in Strongly Coupled Coulomb Systems, eds. by G.J. Kalman et al., (Plenum Press, New York, 1998); The quantum-diffraction term in the free energy for Coulomb plasma, effective-potential approach. J. Phys. France 10, Pr5-455–459 (2000)

    Google Scholar 

  • A.S. Kaklyugin, Teplophys. Vyss. Temp. 23, 217 (1985)

    Google Scholar 

  • G. Kalman, J. Rommel, K. Blagoev (eds.), Strongly Coupled Coulomb Systems (Plenum Press, New York, 1998)

    Google Scholar 

  • G. Kelbg, Quantenstatistik der Gase mit Coulombwechselwirkung. Ann. Physik (Leipzig) 12, 219–224, 354–360 (1963); 14, 394–403 (1964)

    Google Scholar 

  • G. Kelbg, Einige Methoden der statistischen Thermodynamik hochionisierter Plasmen, Ergebnisse der Plasmaphysik aund Gaselektronik, vol. III (Akademie Verlag, Berlin, 1972)

    Google Scholar 

  • D. Klakow, C. Toepffer, P.-G. Reinhard, Phys. Lett. A 192, 55 (1994). J. Chem. Phys. 101, 10766 (1994)

    Article  ADS  Google Scholar 

  • M. Knaup, P.-G. Reinhard, C. Toepffer, G. Zwicknagel, Wave packet molecular dynamics simulations of hydrogen at mbar pressures. Computer Phys. Comm. 147, 202–204 (2002)

    Article  ADS  MATH  Google Scholar 

  • M. Knaup, P.-G. Reinhard, C. Toepffer, G. Zwicknagel, J. Phys. A Math. Gen. 36, 6165 (2003)

    Article  ADS  Google Scholar 

  • H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (World Scientific, Singapore, 2009)

    Book  MATH  Google Scholar 

  • YuL Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasmas, Izdat MGU 1964. Engl. transl. (Pergamon, Oxford, 1967)

    Google Scholar 

  • Y.L. Klimontovich, Statistical physics (in Russ) (Nauka, 1982); Engl. transl (Harwood, New York, 1986)

    Google Scholar 

  • W. YuL Klimontovich, Zh Ebeling, Eksp., Teor. Fiz. 42, 146 (1972)

    Google Scholar 

  • W.D. YuL Klimontovich, Kraeft. Teplofiz. Vyss. Temp. 12, 239 (1974)

    ADS  Google Scholar 

  • V.P. Kopyshev, Second virial coefficients of a plasma. Sov. Phys. JETP 28, 684–686 (1969)

    ADS  Google Scholar 

  • W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag & Pergamon Press, Berlin & New York, 1986)

    Google Scholar 

  • W.D. Kraeft, D. Kremp, G. Röpke, Direct linear term in the equation of state of plasmas. Phys. Rev. E 91, 013108 (2015)

    Article  ADS  Google Scholar 

  • D. Kremp, W.D. Kraeft, W. Ebeling, Quantum statistics of the second virial coefficients and scattering theory. Physica 51, 164 (1971)

    Article  Google Scholar 

  • D. Kremp, G. Schmitz, Z. Naturforschung 22a, 1366, 1392 (1967)

    Google Scholar 

  • D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    MATH  Google Scholar 

  • A.I. Larkin, Zh. eksp. teor. Fiz. (Russ.) 38, 1896 (1960)

    Google Scholar 

  • J.D. Landau, E.M. Lifshits, Statistical Physics (part I), Nauka Moska 1976, German transl Berlin 1979

    Google Scholar 

  • E.H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  • P.A. Martin, Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • J.E. Mayer, The theory of ionic solutions. Chem. Phys. 18, 1426–1436 (1950)

    ADS  Google Scholar 

  • B. Militzer, D.M. Ceperley, Phys. Rev. Lett. 85, 1890 (2000)

    Article  ADS  Google Scholar 

  • E. Montroll, J. Ward, Quantum statistics of interacting particles. Phys. Fluids 1, 55 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I.V. Morozov, I.A. Valuev, J. Phys. A Math. Theor. 42, 214044 (2009); Contr. Plasma Phys. 52, 140 (2012)

    Google Scholar 

  • J. Ortner, Equation of states for classical; coulomb systems: use of the Hubbard-Schofield approach. Phys. Rev. E 59, 6312–6320 (1999)

    Article  ADS  Google Scholar 

  • J. Ortner, I. Valuev, W. Ebeling, Electric microfield distribution in two-component plasmas. Theory Simulations Contrib. Plasma Phys. 39, 311 (1999)

    Article  ADS  Google Scholar 

  • D. Pines, P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, Amsterdam, 1966) (Russ. Transl. Mir, Moskva, 1967)

    Google Scholar 

  • M. Planck, Zur Quantenstatistik des Bohrschen Atommodells. Ann. Phys. 75, 673–684 (1924)

    Article  Google Scholar 

  • E.L. Pollock, J.P. Hansen, Phys. Rev. A 8, 3110 (1973)

    Article  ADS  Google Scholar 

  • R. Redmer, Phys. Rep. 282, 35 (1997)

    Article  ADS  Google Scholar 

  • R. Redmer, G. Röpke, S. Kuhlbrodt, H. Reinholz, Phys. Rev. B 63, 233104 (2001)

    Article  ADS  Google Scholar 

  • H. Reinholz, Ann. Phys. (Paris) 30, 1 (2005)

    Google Scholar 

  • J. Riemann, M. Schlanges, H.E. DeWitt, W.D. Kraeft, Equation of state of the weakly degenerate OCP. Phys. A 219, 423–435 (1995)

    Article  Google Scholar 

  • G. Rohde, G. Kelbg, W. Ebeling, Binary slater sums and distribution functions. Ann. Physik (Leipzig) 22, 1 (1968)

    Google Scholar 

  • S.P. Sadykova at al., Contr. Plasma Phys. 47, 659, 1160 (2007); 49, 76 (2009)

    Google Scholar 

  • S.P. Sadykova, W. Ebeling, I.M. Tkachenko, Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas. Eur. Phys. J. D 61, 117–130 (2011)

    Article  ADS  Google Scholar 

  • G. Schmitz, D. Kremp, Quantenmechanische Verteilungsfunktion für ein Elektronengas. Z. Naturforschung A 23, 1392–1395 (1967)

    ADS  Google Scholar 

  • A.N. Starostin, V.C. Roerich, R.M. More, How correct is the EOS of weakly nonideal plasmas. Contr. Plasma Phys. 43, 369–372 (2003)

    Article  ADS  Google Scholar 

  • A.N. Starostin, V.C. Roerich, Bound states in nonideal plasmas: Formulation of the partition function and application to the solar interior. Plasma Sources Sci. Technol. 15, 410–415 (2006)

    Article  ADS  Google Scholar 

  • W. Stolzmann, W. Ebeling, New Padé approximations for the free charges in two-component strongly coupled plasmas based on the Unsöld-Berlin-Montroll asymptotics. Phys. Lett. A 248, 242–246 (1998)

    Article  ADS  Google Scholar 

  • R.G. Storer, Path-integral calculation of the quantum-statistical density matrix for attractive Coulomb forces. J. Math. Phys. 9, 964–970 (1968); Radial distribution function for a quantum plasma. Phys. Rev. 176, 326–331 (1968)

    Google Scholar 

  • S.A. Trigger, V.E. Filinov, V.E. Fortov, M. Bonitz, W. Ebeling, Internal energy of of high density hydrogen. Zh. eksp. tor. Fiz (USSR) 123, 527–542 (2004)

    Google Scholar 

  • B.A. Trubnikov, V.F. Elesin, Quantum correlation functions in a Maxwellian plasma. JETP 20, 866–872 (1965)

    MathSciNet  MATH  Google Scholar 

  • A.A. Vedenov, A.I. Larkin, Equation of state of plasmas , Sov.Phys. JETP 9, 806–821 (1959)

    Google Scholar 

  • I.R. Yukhnovsky, M.G. Holovko, Statistical Theory of Classical Equilibrium Systems (in Russ.) (Nauk. Dumka, Kiev, 1980)

    Google Scholar 

  • V.M. Zamalin, G.E. Norman, V.S. Filinov, Method Monte Carlo in Statistical Physics (Nauka, Moscow, 1977)

    Google Scholar 

  • B.V. Zelener, G.E. Norman, V.S. Filinov, Perturbation Theory and Pseudopotential Method in Statistical Physics (Nauka, Moscow, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Ebeling .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebeling, W., Fortov, V.E., Filinov, V. (2017). Coulomb Correlations and EOS of Nondegenerate Nonideal Plasmas. In: Quantum Statistics of Dense Gases and Nonideal Plasmas. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-66637-2_4

Download citation

Publish with us

Policies and ethics