Skip to main content

Physics of Dense Gases, Nonideal Plasmas, and High Energy Density Matter

  • Chapter
  • First Online:
Quantum Statistics of Dense Gases and Nonideal Plasmas

Abstract

Here we summarize the most important results in this field of physics, which is growing due to the dominant role of these forms of matter in the cosmos. We describe the progress made in physical studies and the statistical theory of dense gases and nonideal plasmas, including their historical roots in the work of van der Waals, Debye, Saha, Planck, Einstein, and others. We present the basic tools required for the quantum statistical description of nonideal fluid systems, including analytical methods and computer simulations, and we discuss studies of plasma-like matter with high energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.A. Abrikosov, L. Gorkov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (in Russian) (Moscow, 1962)

    Google Scholar 

  • A. Alastuey, A. Perez, Virial expansion ot the equation of state of a quantum plasma, Europhys. Lett. 20, 19–24 (1992)

    Google Scholar 

  • A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the EOS of plasmas, Phys. Rev. E 92, 047101 (2015)

    Google Scholar 

  • M. Badino, The odd couple: Boltzmann, Planck and applications of statistics to physics 1900–1913. Ann. Phys. (Berlin) 18, 81–101 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Balescu, Statistical Mechanics of Charged Particles (Wiley, London, 1963)

    MATH  Google Scholar 

  • J.A. Barker, D. Henderson, Perturbation theory and EOS for fluids. J. Chem. Phys. 47, 2856 (1967)

    Article  ADS  Google Scholar 

  • K. Beneke, Erich Hückel und seine Arbeiten zur theoretischen Chemie, Mitt. Kolloid-Gesellschaft 274–304 (1999)

    Google Scholar 

  • B.J. Berne, G. Ciccotti, D.F. Coker (eds.), Classical and Quantum Dynamics of Condensed Phase Simulation (World Scientific, Singapore, 1998)

    Google Scholar 

  • K. Binder (ed.), Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979), p. 1986

    Google Scholar 

  • D. Blaschke, D. Sedrakian, Superdense QCD Matter and Compact Stars (Springer, Berlin, 2006)

    Book  Google Scholar 

  • D. Blaschke, M. Buballa, A. Dubinin, G. Röpke, D. Zablocki, Generalized Beth–Uhlenbeck approach to mesons and diquarks in hot dense quark matter. Ann. Phys. 348, 228–255 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • N.N. Bogolyubov, Collected Papers, vol. 1–12 (Fizmatlit, Moscow, 2005–2009)

    Google Scholar 

  • N.N. Bogolyubov, N.N. Bogolyubov Jr., Introduction to Quantum Statistical Mechanics (Gordon and Breach, New York, 1992)

    Google Scholar 

  • M. Bonitz, Quantum Kinetic Theory (B.G. Teubner, Stuttgart, 1998); 2nd edition (Springer, Berlin, 2016)

    Google Scholar 

  • M. Bonitz, W.D. Kraeft (eds.), Kinetic theory of nonideal plasmas. J. Phys.: Conf. Ser. 11 (2005)

    Google Scholar 

  • M. Bonitz, D. Semkat (eds.), Introduction to Computational Methods for Many Body Systems (Rinton Press, Princeton, 2006)

    Google Scholar 

  • H.P. Bonzel, A.M. Bradshaw, G. Ertl (eds.), Physics and Chemistry of Alkali Metal Adsorption (Elsevier, Amsterdam, 1989)

    Google Scholar 

  • L. Brillouin, Les statistiques quantiques et leurs applications, Paris 1930; German translation, Berlin (1931)

    Google Scholar 

  • L.S. Brown, L.G. Yaffe, Effective field theory of highly ionized plasmas. Phys. Rep. 340, 1–164 (2001)

    Article  ADS  MATH  Google Scholar 

  • S.G. Brush, H.L. Sahlin, E. Teller, Monte Carlo study of a one-component plasma I. J. Chem. Phys. 45, 2102 (1966)

    Article  ADS  Google Scholar 

  • D.M. Ceperley, Path integrals in the theory of condensed Helium. Rev. Mod. Phys. 65, 279–356 (1995)

    Article  ADS  Google Scholar 

  • S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd edn. (Cambridge Mathematical Library, Cambridge, 1991)

    MATH  Google Scholar 

  • A.P. Chetverikov, W. Ebeling, M.G. Velarde. Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons. Eur. Phys. J. B 70, 217–227 (2011)

    Google Scholar 

  • P. Debye, Handelingen Nederlandsch Natuuren Congres (1923)

    Google Scholar 

  • P. Debye, E. Hückel, Theorie der Elektrolyte I. Physik Z. 24, 185 (1923)

    MATH  Google Scholar 

  • C. Deutsch, Nodal expansion in a real matter plasma. Phys. Lett. A 60, 317–318 (1977)

    Google Scholar 

  • H.E. De Witt, Evaluation of the quantum-mechanical ring sum with Boltzmann statistics. J. Math. Phys. 3, 1216–1228 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H.E. De Witt, M. Schlanges, A.Y. Sakakura, W.D. Kraeft, Low density expansion of the equation of state for a quantum electron gas. Phys. Lett. A 197, 326 (1995)

    Article  ADS  Google Scholar 

  • W. Ebeling, Statistical thermodynamics of bound states in plasmas (in Dt.). Ann. Physik (Leipzig) 19, 104–112 (1967)

    Article  ADS  Google Scholar 

  • W. Ebeling, Derivation of free energy of quantum plasmas from exact scattering shifts (in Dt.). Ann. Physik 22, 33–39, 383–391 (1968)

    Google Scholar 

  • W. Ebeling, Equation of state and Saha equation of partially ionized plasmas. Physica 38, 378 (1968); 73, 573–584 (1974)

    Google Scholar 

  • W. Ebeling, On the possibility of diffusion instabilities in weak electrolytes. Z. Phys. Chem. 247, 340 (1971); Quantum statistics of ionization. Phys. Stat. Sol. (b) 46, 243–255 (1971)

    Google Scholar 

  • W. Ebeling, D. Hoffmann, The Berlin school of thermodynamics founded by Helmholtz and Clausius. Eur. J. Phys. 12, 1–9 (1991)

    Article  Google Scholar 

  • W. Ebeling, D. Hoffmann, Eine Vorlage Einsteins in der Preuischen Akademie der Wissenschaften 1924, Leibniz Online, EbelingHoffmann.pdf (2014)

    Google Scholar 

  • W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976). Extended Russ. translation Mir, Moscow (1979)

    Google Scholar 

  • W. Ebeling, V.F. Fortov, YuL Klimontovich, et al. (eds.), Transport Properties of Dense Plasmas (Birkhäuser, Boston, 1984)

    Google Scholar 

  • W. Ebeling, A. Förster, V.E. Fortov, V.K. Gryaznov, AYa. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991)

    Google Scholar 

  • W. Ebeling, A. Förster, V. Fortov, V. Gryaznov, A. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991) (Russ. transl. Moskva, Ishevsk, 2007)

    Google Scholar 

  • W. Ebeling, M.Yu. Romanovsly, I.M. Sokolov, Velocity distributions and kinetic equations including Levy power law tails. Contr. Plasma Phys, 49, 704–712 (2009)

    Google Scholar 

  • D. Ebert, Eichtheorien: Grundlage der Elementarteilchenphysik (VCH-Verlag, Weinheim, 1989)

    Google Scholar 

  • J. Eggert, Über den Dissoziationzustand der Fixsterngase. Physikalische Zeitschrift 20, 570–574 (1919)

    Google Scholar 

  • A. Einstein, Quantentheorie des einatomigen idealen gases. Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl. 22, 261–267 (1924); 23, 3–14 (1925)

    Google Scholar 

  • D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen (författare) (Almqvist and Wiksell, Uppsala, 1917)

    Google Scholar 

  • H. Falkenhagen, W. Ebeling, Equilibrium properties of ionized dilute electrolytes, in Ionic Interactions, ed. by S. Petrucci (Academic Press, New York, 1971)

    Google Scholar 

  • R. Feistel, W. Ebeling, Evolution of Complex Systems (Kluwer, Dordrecht, 1989)

    MATH  Google Scholar 

  • R. Feistel, W. Ebeling, Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim, 2011)

    Book  MATH  Google Scholar 

  • H. Fehske, R. Schneider, A. Weibe (eds.), Computational Many-Particle Physics (Springer, Berlin, 2008)

    Google Scholar 

  • R.P. Feynman, Statistical Mechanics (Benjamin, Reading Mass, 1972)

    Google Scholar 

  • M.E. Fisher, Y. Levin, Criticality in ionic fluids: Debye–Hückel theory, Bjerrum, and beyond. Phys. Rev. Lett. 71, 2138 (1993)

    Article  Google Scholar 

  • H. Friedman, Ionic Solution Theory (Wiley Interscience, New York, 1962)

    Google Scholar 

  • V. Fortov, M. Mochalov et al., Phys. Rev. Lett. 99, 185001 (2007)

    Article  ADS  Google Scholar 

  • V.E. Fortov, Extreme States of Matter (Russ) (FizMatGis, Moskva, 2009). New edition 2015

    Google Scholar 

  • V.E. Fortov, Equation of State of Matter (FizMatGis, Moskva, 2013). (in Russian)

    Google Scholar 

  • V.E. Fortov, Extreme States of Matter: On Earth and in the Cosmos, The Frontiers Collection (Springer, Berlin, 2011); Extreme States of Matter, High Energy Density Physics (Springer, Berlin, 2016)

    Google Scholar 

  • V.L. Ginzburg, The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics (Springer, Berlin, 2001)

    Book  Google Scholar 

  • B. Greene, The Fabric of the Cosmos (Knopf, New York, 2004)

    MATH  Google Scholar 

  • H. Haken, P. Plath, W. Ebeling, YuM Romanovsky, Beiträge zur Geschichte der Synergetik (Springer, Berlin, 2016)

    Book  Google Scholar 

  • J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, New York, 1976); J.N. Henn, J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lecture Notes in Physics (Springer, Berlin, 2014)

    Google Scholar 

  • P.C. Hemmer, H. Holden, S. Kjelstrup Ratkje (eds.), The Collected Works of Lars Onsager (World Scientific, Singapore, 1996)

    Google Scholar 

  • F. Hensel, S. Juengst, F. Noll, R. Winter, in Localisation and Metal Insulator Transitions, ed. by D. Adler, H. Fritsche (Plenum, New York, 1985)

    Google Scholar 

  • T.L. Hill, Statistical Mechanics, Principles and Selected Applications (McGraw Hill, New York, 1956)

    MATH  Google Scholar 

  • J.O. Hirschfelder, C.F. Curtis, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

    MATH  Google Scholar 

  • P. Hoyng, Relativistic Astrophysics and Cosmology (Springer, Dordrecht, 2006)

    Book  Google Scholar 

  • S. Ichimaru, Statistical Plasma Physics (Addison-Wesley, Redwood, 1992)

    Google Scholar 

  • D.R. Inglis, E. Teller, Astrophysics 90, 430 (1939)

    Google Scholar 

  • G. Kalman (ed.), Strongly Coupled Coulomb Systems (Pergamon Press, Oxford, 1998)

    Google Scholar 

  • G. Kelbg, Quantenstatistik der Plasmen. Annalen der Physik 12, 354 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  • G. Kelbg, Einige Methoden der statistischen Thermodynamik hochionisierter Plasmen, Ergebnisse der Plasmaphysik aund Gaselektronik, vol. 3 (Akademie-Verlag, Berlin, 1972)

    Google Scholar 

  • C. Kirsten, H.-G. Körber (eds.), Physiker über Physiker (Akademie-Verlag, Berlin, 1975)

    Google Scholar 

  • H. Kleinert, Path integrals in quantum mechaniscs, statistics, polymer physics and financial markets, World Scientific, Singapore (1995)

    Google Scholar 

  • Yu.L. Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasmas (Izdat MGU, Moscow, 1964); English translation (Pergamon, Oxford, 1967)

    Google Scholar 

  • Yu.L. Klimontovich, Statistical Physics (Russ.) (Nauka, Moscow, 1982); English translation (Harwood, New York, 1986)

    Google Scholar 

  • W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag and Pergamon Press, Berlin and New York, 1986)

    Google Scholar 

  • W.D. Kraeft, D. Kremp, G. Röpke, Direct linear term in the equation of state of plasmas. Phys. Rev. E 91, 013108 (2015)

    Article  ADS  Google Scholar 

  • M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Science 348(6242), 1455–1460 (2015)

    Google Scholar 

  • G. Kalman, P. Carini (eds.), Strongly Coupled Plasma (Plenum Press, New York, 1978)

    Google Scholar 

  • V.P. Krainov, M.B. Smirnov, Cluster beams in the super-intense femtosecond laser pulse. Phys. Rep. 370, 237–331 (2002)

    Article  ADS  Google Scholar 

  • V.P. Krainov, M.B. Smirnov, B.M. Smirnov, Femtosecond excitation of cluster beams. Phys. Usp. 50, 907–931 (2007)

    Article  ADS  Google Scholar 

  • D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    MATH  Google Scholar 

  • A.I. Larkin, Thermodynamic functions of a low-temperature plasma. JETP 11, 1363–1364 (1960)

    Google Scholar 

  • J.D. Landau, E.M. Lifshits,Statistical Physics (Part I), Nauka Moska 1976, German translation Berlin 1979, English translation Statistical Physics, Part 1, vol. 5, 3rd edn. (Butterworth–Heinemann, London, 1980)

    Google Scholar 

  • E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, vol. X (Publishing Science, Moscow, 1979)

    Google Scholar 

  • A. Linde, What Energy Drives the Universe (Stanford University, Stanford, 2005)

    Google Scholar 

  • W.R. Magro, D.M. Ceperley, C. Pierleoni, B. Bernu, Phys. Rev. Lett. 76, 1240 (1996)

    Article  ADS  Google Scholar 

  • P.C. Martin, J. Schwinger, Theory of many-particle systems. Phys. Rev. 115, 1342–1432 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.E. Mayer, Theory of ionic solutions. J. Chem. Phys. 18, 1426–1436 (1950)

    Article  ADS  Google Scholar 

  • B. Militzer, R. Pollock, Variational density matrix method for warm condensed matter and dense hydrogen. Phys. Rev. E 61, 3470–382 (2000)

    Article  ADS  Google Scholar 

  • E. Montroll, J. Ward, Quantum statistics of interacting particles. Phys. Fluids 1, 55 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Morita, Equation of state of high temperature plasma. Prog. Theor. Phys. (Kyoto) 22, 757–774 (1959)

    Google Scholar 

  • N. Mott, The transition to the metallic state. Phil. Mag. 6, 287–309 (1961)

    Article  ADS  Google Scholar 

  • V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity (NOOK Book, 2007)

    Google Scholar 

  • V. Mukhanov, Quantum Universe (Plenary lecture DPG, Berlin, 2015)

    Google Scholar 

  • J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  • G.E. Norman, A. Starostin, High Temp. 6, 394 (1968); 8, 381 (1970)

    Google Scholar 

  • D. Pines, The Many Body Problem (Benjamin, New York, 1961)

    MATH  Google Scholar 

  • D. Pines, P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, 1966); Russ. Translation Mir, Moskva (1967)

    Google Scholar 

  • M. Planck, Zur Quantenstatistik des Bohrschen Atommodells. Annalen der Physik 75, 673–684 (1924)

    Article  ADS  Google Scholar 

  • R. Redmer, G. Röpke, Progress in the theory of dense strongly coupled plasmas. Contr. Plasma Phys. 50, 970–985 (2010)

    Article  ADS  Google Scholar 

  • R. Redmer, B. Holst, F. Hensel (eds.), Metal to Non-Metal Transitions (Springer, Berlin, 2010)

    MATH  Google Scholar 

  • K. Riewe, R. Rompe, Ann. Phys. (Leipzig) 17, 126 (1938)

    Google Scholar 

  • R. Rompe, H. Treder, W. Ebeling, Zur grossen Berliner Physik (Teubner, Leipzig, 1987)

    Google Scholar 

  • H.J. Rothe, Lattice Gauge Theories (World Scientific, Singapore, 2005)

    Book  MATH  Google Scholar 

  • M.N. Saha, Phil. Mag. 40, 472 (1920); Z. Phys. 6, 40 (1921)

    Google Scholar 

  • H. Satz, Extreme States of Matter in Strong Interaction Physics: An Introduction (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  • H. Satz, Ultimate Horizons: Probing the Limits of the Universe (Springer, Berlin, 2013)

    Book  Google Scholar 

  • K. Simonyi, Kulturgeschichte der Physik (Urania Verlag and Harri Deutsch, Frankfurt, 1990)

    Google Scholar 

  • V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)

    Article  ADS  Google Scholar 

  • L. Spitzer, Physics of Fully Ionized Plasmas (Wiley, New York, 1961)

    Google Scholar 

  • V.Ya. Ternovoi, A.S. Filimonov, V.E. Fortov, S.V. Kvitov, D.D. Nikolaev, A.A. Pyalling, Phys. B 265, 6 (1999)

    Article  ADS  Google Scholar 

  • G.E. Uhlenbeck, E. Beth, The quantum theory of the non-ideal gas I. Deviations from the classical theory. Physica 3, 729–745 (1936)

    Article  ADS  MATH  Google Scholar 

  • E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933)

    Article  ADS  Google Scholar 

  • J.D. van der Waals, Over de Continuiteit van den Gas- en Vloeistoftoestand (Continuity of fluid and gaseous state). Dissertation, University of Leiden (1873)

    Google Scholar 

  • A.A. Vedenov, A.I. Larkin, Equation of state of plasmas (in Russ.). Zh. eksp. teor. Fiz. 36, 1133–1142 (1959); Sov. Phys. JETP 9, 806–821 (1959)

    Google Scholar 

  • J. Von Neumann, Mathematische Grundlagen der Quantenmechanik (1932)

    Google Scholar 

  • P.N. Voronzov-Veliaminov, A.M. Eliashevich, V.P. Morgenstern, V.P. Chassovskich, Teplophys. Vysokh. Temp. 8, 277 (1970); 14, 199 (1976)

    Google Scholar 

  • S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 860 (1996)

    Article  ADS  Google Scholar 

  • H. Whitley, A. Alastuey, J.A. Gaffney, R. Cauble, W.D. Kraeft, M. Bonitz, A tribute to the pioneers of the strongly coupled plasmas: Hugh E. De Witt, Bernard Jancovici, Forest A. Rogers. Contr. Plasma Phys. 55, 102–115 (2015)

    Google Scholar 

  • K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon Plasma: From Big Bang to Little Bang (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  • E.P. Wigner, Interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    Article  ADS  MATH  Google Scholar 

  • V.M. Zamalin, G.E. Norman, V.S. Filinov, Monte Carlo Method in Statistical Mechanics (in Russ.) (Nauka, Moscow, 1977)

    Google Scholar 

  • D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Akademie, Berlin, 1996)

    MATH  Google Scholar 

  • J. Zweiback, T.E. Cowan, T. Dimitre et al., Phys. Rev. Lett. 85, 3640 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Ebeling .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebeling, W., Fortov, V.E., Filinov, V. (2017). Physics of Dense Gases, Nonideal Plasmas, and High Energy Density Matter. In: Quantum Statistics of Dense Gases and Nonideal Plasmas. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-66637-2_1

Download citation

Publish with us

Policies and ethics