Skip to main content

Affordances for Capturing and Re-enacting Expert Performance with Wearables

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10474))

Abstract

The WEKIT.one prototype is a platform for immersive procedural training with wearable sensors and Augmented Reality. Focusing on capture and re-enactment of human expertise, this work looks at the unique affordances of suitable hard- and software technologies. The practical challenges of interpreting expertise, using suitable sensors for its capture and specifying the means to describe and display to the novice are of central significance here. We link affordances with hardware devices, discussing their alternatives, including Microsoft Hololens, Thalmic Labs MYO, Alex Posture sensor, MyndPlay EEG headband, and a heart rate sensor. Following the selection of sensors, we describe integration and communication requirements for the prototype. We close with thoughts on the wider possibilities for implementation and next steps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eurostat: Lifelong learning statistics (2016). http://ec.europa.eu/eurostat/statistics-explained/index.php/Lifelong_learning_statistics

  2. Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing: Toward an Ecological Psychology, pp. 67–82 (1977)

    Google Scholar 

  3. Rizzo, A.: The origin and design of intentional affordances. In: Proceedings 6th Conference Designing Interactive Systems, University Park, PA, USA, pp. 239–240. ACM, New York (2006)

    Google Scholar 

  4. Ericsson, K.A., Smith, J.: Prospects and limits of the empirical study of expertise: an introduction. In: Ericsson, K.A., Smith, J. (eds.) Toward a General Theory of Expertise: Prospects and Limits, pp. 1–39. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  5. Newell, A., Simon, H.A.: Human Problem Solving. Prentice Hall, Englewood Cliffs (1972)

    Google Scholar 

  6. Fominykh, M., Wild, F., Smith, C., Alvarez, V., Morozov, M.: An overview of capturing live experience with virtual and augmented reality. In: Preuveneers, D. (ed.) Workshop Proceedings of the 11th International Conference on Intelligent Environments, pp. 298–305. IOS Press, Amsterdam (2015)

    Google Scholar 

  7. Limbu, B., Fominykh, M., Klemke, R., Specht, M., Wild, F.: Supporting training of expertise with wearable technologies: the WEKIT reference framework. In: The International Handbook of Mobile and Ubiquitous Learning. Springer, New York (2017)

    Google Scholar 

  8. Bacca, J., Baldiris, S., Fabregat, R., Graf, S.: Kinshuk: augmented reality trends in education: a systematic review of research and applications. Educ. Technol. Soc. 17(4), 133–149 (2014)

    Google Scholar 

  9. Bower, M., Sturman, D.: What are the educational affordances of wearable technologies? Comput. Educ. 88, 343–353 (2015)

    Article  Google Scholar 

  10. Wagner, R.K., Sternberg, R.J.: Practical intelligence in real-world pursuits: the role of tacit knowledge. J. Pers. Soc. Psychol. 49(2), 436–458 (1985)

    Article  Google Scholar 

  11. Wei, Y., Yan, H., Bie, R., Wang, S., Sun, L.: Performance monitoring and evaluation in dance teaching with mobile sensing technology. Pers. Ubiquit. Comput. 18(8), 1929–1939 (2014)

    Article  Google Scholar 

  12. Li, H., Lu, M., Chan, G., Skitmore, M.: Proactive training system for safe and efficient precast installation. Autom. Constr. 49(Part A), 163–174 (2015)

    Article  Google Scholar 

  13. Prabhu, V.A., Elkington, M., Crowley, D., Tiwari, A., Ward, C.: Digitisation of manual composite layup task knowledge using gaming technology. Compos. Part B: Eng. 112, 314–326 (2017)

    Article  Google Scholar 

  14. Jang, S.-A., Kim, H.-i., Woo, W., Wakefield, G.: AiRSculpt: a wearable augmented reality 3D sculpting system. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2014. LNCS, vol. 8530, pp. 130–141. Springer, Cham (2014). doi:10.1007/978-3-319-07788-8_13

    Chapter  Google Scholar 

  15. Meleiro, P., Rodrigues, R., Jacob, J., Marques, T.: Natural user interfaces in the motor development of disabled children. Procedia Technol. 13, 66–75 (2014)

    Article  Google Scholar 

  16. Araki, A., Makiyama, K., Yamanaka, H., Ueno, D., Osaka, K., Nagasaka, M., Yamada, T., Yao, M.: Comparison of the performance of experienced and novice surgeons. Surg. Endosc. 31(4), 1999–2005 (2017)

    Article  Google Scholar 

  17. Asadipour, A., Debattista, K., Chalmers, A.: Visuohaptic augmented feedback for enhancing motor skills acquisition. Vis. Comput. 33(4), 401–411 (2017)

    Article  Google Scholar 

  18. Kim, S., Dey, A.K.: Augmenting human senses to improve the user experience in cars. Multimed. Tools Appl. 75(16), 9587–9607 (2016)

    Article  Google Scholar 

  19. Ke, F., Lee, S., Xu, X.: Teaching training in a mixed-reality integrated learning environment. Comput. Hum. Behav. 62, 212–220 (2016)

    Article  Google Scholar 

  20. Duente, T., Pfeiffer, M., Rohs, M.: On-skin technologies for muscle sensing and actuation. In: Proceedings of UbiComp 2016, pp. 933–936. ACM, New York (2016)

    Google Scholar 

  21. Kwon, Y., Lee, S., Jeong, J., Kim, W.: HeartiSense: a novel approach to enable effective basic life support training without an instructor. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 431–434. ACM, New York (2014)

    Google Scholar 

  22. Benedetti, F., Catenacci Volpi, N., Parisi, L., Sartori, G.: Attention training with an easy–to–use brain computer interface. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8526, pp. 236–247. Springer, Cham (2014). doi:10.1007/978-3-319-07464-1_22

    Google Scholar 

  23. Kowalewski, K.-F., Hendrie, J.D., Schmidt, M.W., Garrow, C.R., Bruckner, T., Proctor, T., Paul, S., Adigüzel, D., Bodenstedt, S., Erben, A., Kenngott, H., Erben, Y., Speidel, S., Müller-Stich, B.P., Nickel, F.: Development and validation of a sensor-and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg. Endosc. 31, 1–11 (2016)

    Google Scholar 

  24. Sanfilippo, F.: A multi-sensor fusion framework for improving situational awareness in demanding maritime training. Reliabil. Eng. Syst. Saf. 161, 12–24 (2017)

    Article  Google Scholar 

  25. Sharma, P., Wild, F., Klemke, R., Helin, K., Azam, T.: Requirement analysis and sensor specifications: First version. WEKIT, D3.1 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Vovk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guest, W. et al. (2017). Affordances for Capturing and Re-enacting Expert Performance with Wearables. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagustín, M. (eds) Data Driven Approaches in Digital Education. EC-TEL 2017. Lecture Notes in Computer Science(), vol 10474. Springer, Cham. https://doi.org/10.1007/978-3-319-66610-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66610-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66609-9

  • Online ISBN: 978-3-319-66610-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics