Skip to main content

Effect of Persistent Sodium Current on Neuronal Activity

  • Conference paper
  • First Online:
Advances in Neural Computation, Machine Learning, and Cognitive Research (NEUROINFORMATICS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 736))

Included in the following conference series:

  • 1335 Accesses

Abstract

In epilepsy, the number of persistent sodium (NaP) channels increases. To study their effects on neuronal excitability we applied dynamic-clamp (DC). We have revealed that NaP current decreases rheobase, promotes depolarization block (DB) and changes membrane potential between spikes. Bifurcation analysis of a Hodgkin-Huxley-like neuron reveals that NaP current shifts saddle-node and Hopf bifurcations which correspond to the rheobase and DB, in agreement with experiments. By shifting DB, NaP current can make an antiepileptic effect via excitatory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohling, R., Wolfart, J.: Potassium channels in epilepsy. Cold Spring Harb Perspect Med. 6(a022871), 1–24 (2016)

    Google Scholar 

  2. Bernard, C., Anderson, A., Poolos, N., Becker, A., Beck, H., Johnson, D.: Acquired dendritic channelopathy in epilepsy. Science 305, 532–535 (2004)

    Article  Google Scholar 

  3. Pacheco Otalora, L.F., Hernandez, E.F., et al.: Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res. 1200, 116–131 (2008)

    Article  Google Scholar 

  4. Stafstrom, C.E.: Persistent sodium current and its role in epilepsy. Epilepsy Curr. 7(1), 15–22 (2007)

    Article  Google Scholar 

  5. Agrawal, N., Alonso, A., Ragsdale, D.S.: Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia. 44, 1601–1604 (2003)

    Article  Google Scholar 

  6. Royeck, M., Kelly, T., Opitz, T., et al.: Downregulation of spermine augments dendritic persistent sodium currents and synaptic integration after status epilepticus. J. Neurosci. 35(46), 15240–15253 (2015)

    Article  Google Scholar 

  7. Vervaeke, K., Hu, H., Graham, L.J., Storm, J.F.: Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49, 257–270 (2005)

    Article  Google Scholar 

  8. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C.: On the nature of seizure dynamics. Brain. 137, 2210–2230 (2014)

    Article  Google Scholar 

  9. Yekhlef, L., Breschi, G.L., Taverna, S.: Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex. Sci. Rep. 7 (2017). Article 43230

    Google Scholar 

  10. Smirnova, E.Y., Zaitsev, A.V., Kim, K.K., Chizhov, A.V.: The domain of neuronal firing on a plane of input current and conductance. J. Comput. Neurosci. 39(2), 217–233 (2015)

    Article  MathSciNet  Google Scholar 

  11. Amakhin, D.V., Ergina, J.L., Chizhov, A.V., Zaitsev, A.V.: Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex. Front. Cell. Neurosci. 10, 1–15 (2016). Article 233

    Article  Google Scholar 

  12. Hu, H., Vervaeke, K., Storm, J.F.: Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J. Physiol. 545, 783–805 (2002)

    Article  Google Scholar 

  13. Zaitsev, A.V., Povysheva, N.V., Gonzalez-Burgos, G., Lewis, D.A.: Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. J. Neurophysiol. 108, 595–609 (2012)

    Article  Google Scholar 

  14. Wei, Y., Ullah, G., Ingram, J., Schiff, S.J.: Oxygen and seizure dynamics: II computational modeling. J Neurophysiol. 112, 213–223 (2014)

    Article  Google Scholar 

  15. Gloveli, T., Dugladze, T., Schmitz, D., Heinemann, U.: Properties of entorhinal deep layer neurons projecting to the rat dentate gyrus. Eur. J. Neurosci. 13, 413–420 (2001)

    Article  Google Scholar 

  16. Borg-Graham L.J.: Interpretations of data and mechanisms for hippocampal pyramidal cell models. In: Cerebral Cortex, pp 19–138. Springer (1999)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (Project 16-15-10201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Smirnova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Smirnova, E.Y., Zefirov, A.V., Amakhin, D.V., Chizhov, A.V. (2018). Effect of Persistent Sodium Current on Neuronal Activity. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research. NEUROINFORMATICS 2017. Studies in Computational Intelligence, vol 736. Springer, Cham. https://doi.org/10.1007/978-3-319-66604-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66604-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66603-7

  • Online ISBN: 978-3-319-66604-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics