Skip to main content

Computer Simulations of Membrane Proteins

  • Chapter
  • First Online:
Book cover Membrane Organization and Dynamics

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 20))

Abstract

Developments in computational algorithms and structure-determination technologies have enabled molecular dynamics simulations to become a routine tool to investigate the structure and dynamics of biological membranes and membrane proteins in great detail. In this chapter, we provide an overview of atomistic molecular dynamics simulations and related methods, such as coarse-grain simulations and biased sampling methods, and illustrate using key examples how such methods have advanced our understanding in the field of membrane protein biophysics. We exemplify how MD simulations have provided insights into selective permeation mechanisms through lipid bilayers and ion channels, as well as conformational changes associated with transport in both G-protein coupled receptors and membrane transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Röhrig UF, Guidoni L, Rothlisberger U. Early steps of the intramolecular signal transduction in rhodopsin explored by molecular dynamics simulations. Biochemistry. 2002;41(35):10799–809.

    Article  PubMed  CAS  Google Scholar 

  2. Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504(7478):107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baaden M, Marrink SJ. Coarse-grain modelling of protein–protein interactions. Curr Opin Struct Biol. 2013;23(6):878–86.

    Article  CAS  PubMed  Google Scholar 

  4. Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23(2):187–99.

    Article  Google Scholar 

  5. Laio A, Parrinello M. Escaping free-energy minima. PNAS. 2002;99(20):12562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans E, Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997;72(4):1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun. 1995;91(1–3):1–41.

    Article  CAS  Google Scholar 

  8. Crozier PS, Stevens MJ, Forrest LR, Woolf TB. Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change. J Mol Biol. 2003;333(3):493–514.

    Article  CAS  PubMed  Google Scholar 

  9. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1-3):43–56.

    Article  CAS  Google Scholar 

  10. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18.

    Article  CAS  Google Scholar 

  11. Plimpton S, Crozier P, Thompson A. LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories. 2007;18

    Google Scholar 

  12. Bowers K, Chow E, Xu H, Dror R, Eastwood M, Gregersen B, Klepeis J, Kolossvary I, Moraes M, Sacerdoti F, Salmon J, Shan Y, Shaw D. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC ‘06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 2006. p. 43–43.

    Google Scholar 

  13. Alder B, Wainwright T. Phase transition for a hard sphere system. J Chem Phys. 1957;27(5):1208.

    Article  CAS  Google Scholar 

  14. Rahman A, Stillinger FH. Molecular dynamics study of liquid water. J Chem Phys. 1971;55(7):3336–59.

    Article  CAS  Google Scholar 

  15. Levitt M, Warshel A. Computer simulation of protein folding. Nature. 1975;253(5494):694–8.

    Article  CAS  PubMed  Google Scholar 

  16. McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature. 1977;267(5612):585–90.

    Article  CAS  PubMed  Google Scholar 

  17. Nonella M, Wlndemuth A, Schulten K. Structure of bacteriorhodopsin and in situ isomerization of retinal: a molecular dynamics study. Photochem Photobiol. 1991;54(6):937–48.

    Article  CAS  Google Scholar 

  18. Dratz EA, Van Breemen JF, Kamps KP, Keegstra W, Van Bruggen EF. Two-dimensional crystallization of bovine rhodopsin. Biochim Biophys Acta Protein Struct Mol Enzymol. 1985;832(3):337–42.

    Article  CAS  Google Scholar 

  19. Kniazeff J, Shi L, Loland CJ, Javitch JA, Weinstein H, Gether U. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J Biol Chem. 2008;283(25):17691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys. 2001;115(20):9169–83.

    Article  CAS  Google Scholar 

  21. Grossfield A. WHAM: the weighted histogram analysis method. 2012.

    Google Scholar 

  22. den Otter WK. Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates. J Chem Phys. 2000;112(17):7283–92.

    Article  Google Scholar 

  23. den Otter WK, Briels WJ. The calculation of free-energy differences by constrained molecular-dynamics simulations. J Chem Phys. 1998;109:4139–46.

    Article  Google Scholar 

  24. Chipot C, Pohorille A. Free energy calculations. Berlin: Springer; 2007.

    Book  Google Scholar 

  25. Darve E, Rodríguez-Gómez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys. 2008;128:144120.

    Article  PubMed  CAS  Google Scholar 

  26. Van Gunsteren WF. Methods for calculation of free energies and binding constants: successes and problems. In: van Gunsteren WF, Weiner PK, editors. Computer simulation of biomolecular systems: theoretical and experimental applications. Leiden: ESCOM; 1989. p. 27–59.

    Google Scholar 

  27. Jarzynski C. Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E. 1997;56(5):5018–35.

    Article  CAS  Google Scholar 

  28. Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997;78(14):2690–3.

    Article  CAS  Google Scholar 

  29. Dudko OK, Hummer G, Szabo A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. PNAS. 2008;105(41):15755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dudko O, Hummer G, Szabo A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett. 2006;96(10):108101.

    Article  PubMed  CAS  Google Scholar 

  31. Mathai JC, Tristram-Nagle S, Nagle JF, Zeidel ML. Structural determinants of water permeability through the lipid membrane. J Gen Physiol. 2008;131(1):69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bemporad D, Essex JW, Luttmann C. Permeation of small molecules through a lipid bilayer: a computer simulation study. J Phys Chem B. 2004;108(15):4875–84.

    Article  CAS  Google Scholar 

  33. Marrink SJ, Berendsen HJ. Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem. 1996;100(41):16729–38.

    Article  CAS  Google Scholar 

  34. Domene C, Klein ML, Branduardi D, Gervasio FL, Parrinello M. Conformational changes and gating at the selectivity filter of potassium channels. J Am Chem Soc. 2008;130(29):9474–80.

    Article  CAS  PubMed  Google Scholar 

  35. Gabdoulline RR, Wade RC. Brownian dynamics simulation of protein–protein diffusional encounter. Methods. 1998;14(3):329–41.

    Article  CAS  PubMed  Google Scholar 

  36. Mereghetti P, Gabdoulline RR, Wade RC. Brownian dynamics simulation of protein solutions: structural and dynamical properties. Biophys J. 2010;99(11):3782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Im W, Beglov D, Roux B. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput Phys Commun. 1998;111(1):59–75.

    Article  CAS  Google Scholar 

  38. McCammon JA. Target flexibility in molecular recognition. Biochim Biophys Acta. 2005;1754(1):221–4.

    Article  CAS  PubMed  Google Scholar 

  39. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314–21.

    Article  CAS  PubMed  Google Scholar 

  40. Orsi M, Sanderson WE, Essex JW. Permeability of small molecules through a lipid bilayer: a multiscale simulation study. J Phys Chem B. 2009;113(35):12019–29.

    Article  CAS  PubMed  Google Scholar 

  41. Arcario MJ, Mayne CG, Tajkhorshid E. Atomistic models of general anesthetics for use in in silico biological studies. J Phys Chem B. 2014;118(42):12075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Orsi M, Essex JW. Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics. Soft Matter. 2010;6(16):3797–808.

    Article  CAS  Google Scholar 

  43. Wong-Ekkabut J, Baoukina S, Triampo W, Tang I-M, Tieleman DP, Monticelli L. Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol. 2008;3(6):363–8.

    Article  CAS  PubMed  Google Scholar 

  44. Overton CE. Über die osmotischen Eigenschaften der lebenden Pflanzen-und Tierzelle. Zürich: Fäsi & Beer; 1895.

    Google Scholar 

  45. Alper HE, Stouch TR. Orientation and diffusion of a drug analog in biomembranes: molecular dynamics simulations. J Phys Chem. 1995;99(15):5724–31.

    Article  CAS  Google Scholar 

  46. Stouch TR, Alper HE, Bassolino D . In Simulations of drug diffusion in biomembranes, ACS Symposium Series, American Chemical Society. 1995; pp 127–138.

    Google Scholar 

  47. Bassolino-Klimas D, Alper HE, Stouch TR. Mechanism of solute diffusion through lipid bilayer membranes by molecular dynamics simulation. J Am Chem Soc. 1995;117(14):4118–29.

    Article  CAS  Google Scholar 

  48. Marrink S-J, Berendsen HJ. Simulation of water transport through a lipid membrane. J Phys Chem. 1994;98(15):4155–68.

    Article  CAS  Google Scholar 

  49. Katz Y, Diamond JM. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water. J Membr Biol. 1974;17(1):101–20.

    Article  CAS  PubMed  Google Scholar 

  50. Wolosin J, Ginsburg H. The permeation of organic acids through lecithin bilayers resemblance to diffusion in polymers. Biochim Biophys Acta Biomembr. 1975;389(1):20–33.

    Article  CAS  Google Scholar 

  51. Cohen BE. The permeability of liposomes to nonelectrolytes. J Membr Biol. 1975;20(1):205–34.

    Article  CAS  PubMed  Google Scholar 

  52. Brunner J, Senn H, Richards F. 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J Biol Chem. 1980;255(8):3313–8.

    CAS  PubMed  Google Scholar 

  53. Walter A, Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90(3):207–17.

    Article  CAS  PubMed  Google Scholar 

  54. Walter A, Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol. 1984;77(3):255–64.

    Article  CAS  PubMed  Google Scholar 

  55. Bean RC, Shepherd WC, Chan H. Permeability of lipid bilayer membranes to organic solutes. J Gen Physiol. 1968;52(3):495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cascales JL, Cifre JH, de la Torre JG. Anaesthetic mechanism on a model biological membrane: a molecular dynamics simulation study. J Phys Chem B. 1998;102:625–31.

    Article  Google Scholar 

  57. Koubi L, Tarek M, Klein ML, Scharf D. Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys J. 2000;78(2):800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tu K, Tarek M, Klein ML, Scharf D. Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Biophys J. 1998;75(5):2123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chipot C, Wilson MA, Pohorille A. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study. J Phys Chem B. 1997;101(5):782–91.

    Article  CAS  PubMed  Google Scholar 

  60. Pohorille A, Cieplak P, Wilson MA. Interactions of anesthetics with the membrane-water interface. Chem Phys. 1996;204(2):337–45.

    Article  CAS  PubMed  Google Scholar 

  61. Pohorille A, Wilson MA, Chipot C. Interaction of alcohols and anesthetics with the water-hexane interface: a molecular dynamics study. J Phys Chem B. 1997;103:29–40.

    CAS  Google Scholar 

  62. Pratt LR, Pohorille A. Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chem Rev. 2002;102(8):2671–92.

    Article  CAS  PubMed  Google Scholar 

  63. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montellano A, Da Ros T, Bianco A, Prato M. Fullerene C 60 as a multifunctional system for drug and gene delivery. Nanoscale. 2011;3(10):4035–41.

    Article  CAS  PubMed  Google Scholar 

  65. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62.

    Article  CAS  PubMed  Google Scholar 

  66. Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJ, O'Connell J, Stroud RM, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science. 2002;296(5567):525–30.

    Article  CAS  PubMed  Google Scholar 

  67. Verkman A, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Ren Physiol. 2000;278(1):F13–28.

    CAS  Google Scholar 

  68. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605.

    Article  CAS  PubMed  Google Scholar 

  69. de Groot BL, Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 2001;294(5550):2353–7.

    Article  PubMed  Google Scholar 

  70. Hub JS, De Groot BL. Mechanism of selectivity in aquaporins and aquaglyceroporins. PNAS. 2008;105(4):1198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hille B. Ion channels of excitable membranes, vol. 507. Sunderland, MA: Sinauer; 2001.

    Google Scholar 

  72. Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 2013;504(7478):113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475(7356):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Long SB. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science. 2005;309(5736):903–8.

    Article  CAS  PubMed  Google Scholar 

  75. Chen X, Wang Q, Ni F, Ma J. Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. PNAS. 2010;107(25):11352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roux B. Perspectives on: molecular dynamics and computational methods. J Gen Physiol. 2010;135(6):547–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dror RO, Jensen MØ, Borhani DW, Shaw DE. Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J Gen Physiol. 2010;135(6):555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eisenberg B. Interacting ions in biophysics: real is not ideal. Biophys J. 2013;104(9):1849–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Furini S, Domene C. K+ and Na+ conduction in selective and nonselective ion channels via molecular dynamics simulations. Biophys J. 2013;105(8):1737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Horn R, Roux B, Åqvist J. Permeation redux: thermodynamics and kinetics of ion movement through potassium channels. Biophys J. 2014;106(9):1859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Furini S, Domene C. Atypical mechanism of conduction in potassium channels. PNAS. 2009;106(38):16074–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hodgkin AL, Keynes RD. The potassium permeability of a giant nerve fibre. J Physiol. 1955;128(1):61–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jensen MØ, Borhani DW, Lindorff-Larsen K, Maragakis P, Jogini V, Eastwood MP, Dror RO, Shaw DE. Principles of conduction and hydrophobic gating in K+ channels. PNAS. 2010;107(13):5833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Åqvist J, Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000;404(6780):881–4.

    Article  PubMed  Google Scholar 

  85. Berneche S, Roux B. Energetics of ion conduction through the K+ channel. Nature. 2001;414(6859):73–7.

    Article  CAS  PubMed  Google Scholar 

  86. Noskov SY, Berneche S, Roux B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature. 2004;431(7010):830–4.

    Article  CAS  PubMed  Google Scholar 

  87. Egwolf B, Roux B. Ion selectivity of the KcsA channel: a perspective from multi-ion free energy landscapes. J Mol Biol. 2010;401(5):831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Medovoy D, Perozo E, Roux B. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Biochim Biophys Acta Biomembr. 2016;1858:1722–32.

    Article  CAS  Google Scholar 

  89. Bernèche S, Roux B. A gate in the selectivity filter of potassium channels. Structure. 2005;13(4):591–600.

    Article  PubMed  CAS  Google Scholar 

  90. Jogini V, Roux B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys J. 2007;93(9):3070–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. PNAS. 2011;108(15):6109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jogini V, Roux B. Dynamics of the Kv1. 2 voltage-gated K+ channel in a membrane environment. Biophys J. 2007;93(9):3070–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE. Mechanism of voltage gating in potassium channels. Science. 2012;336(6078):229–33.

    Article  CAS  PubMed  Google Scholar 

  94. Khalili-Araghi F, Jogini V, Yarov-Yarovoy V, Tajkhorshid E, Roux B, Schulten K. Calculation of the gating charge for the Kv1. 2 voltage-activated potassium channel. Biophys J. 2010;98(10):2189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jorgensen C, Darré L, Vanommeslaeghe K, Omoto K, Pryde D, Domene C. In Silico Identification of PAP-1 Binding Sites in the Kv1. 2 potassium channel. Mol Pharm. 2015;12(4):1299–307.

    Article  CAS  PubMed  Google Scholar 

  96. Marzian S, Stansfeld PJ, Rapedius M, Rinné S, Nematian-Ardestani E, Abbruzzese JL, Steinmeyer K, Sansom MS, Sanguinetti MC, Baukrowitz T. Side pockets provide the basis for a new mechanism of Kv channel–specific inhibition. Nat Chem Biol. 2013;9(8):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995;15(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  98. MacKinnon R, Heginbotham L, Abramson T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron. 1990;5(6):767–71.

    Article  CAS  PubMed  Google Scholar 

  99. Gross A, Abramson T, MacKinnon R. Transfer of the scorpion toxin receptor to an insensitive potassium channel. Neuron. 1994;13(4):961–6.

    Article  CAS  PubMed  Google Scholar 

  100. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993;268(25):18866–74.

    CAS  PubMed  Google Scholar 

  101. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1. 1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994;45(6):1227–34.

    CAS  PubMed  Google Scholar 

  102. Zhou M, Morais-Cabral JH, Mann S, MacKinnon R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 2001;411(6838):657–61.

    Article  CAS  PubMed  Google Scholar 

  103. Koo GC, Blake JT, Shah K, Staruch MJ, Dumont F, Wunderler D, Sanchez M, McManus OB, Sirotina-Meisher A, Fischer P, Boltz RC, Goetz MA, Baker R, Bao J, Kayser F, Rupprecht KM, Parsons WH, Tong X-C, Ita IE, Pivnichny J, Vincent S, Cunningham P, Hora D, Feeney W, Kaczorowski G, Springer MS. Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol. 1999;197(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  104. McCusker EC, Bagneris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, Wallace BA. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun. 2012;3:1102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Catterall WA. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol. 2012;590(11):2577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carnevale V, Treptow W, Klein ML. Sodium ion binding sites and hydration in the lumen of a bacterial ion channel from molecular dynamics simulations. J Phys Chem Lett. 2011;2(19):2504–8.

    Article  CAS  Google Scholar 

  107. Domene C, Klein ML, Branduardi D, Gervasio FL, Parrinello M. Conformational changes and gating at the selectivity filter of potassium channels. J Am Chem Soc. 2008;130(29):9474–80.

    Article  CAS  PubMed  Google Scholar 

  108. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature. 2001;414:43–8.

    Article  CAS  PubMed  Google Scholar 

  109. Domene C, Furini S. Dynamics, energetics, and selectivity of the low-K+ KcsA channel structure. J Mol Biol. 2009;389(3):637–45.

    Article  CAS  PubMed  Google Scholar 

  110. Benos DJ, Hyde BA, Latorre R. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin. J Gen Physiol. 1983;81(5):667–85.

    Article  CAS  PubMed  Google Scholar 

  111. Begenisich TB, Cahalan MD. Sodium channel permeation in squid axons. I: reversal potential experiments. J Physiol. 1980;307:217–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vora T, Corry B, Chung SH. Brownian dynamics study of flux ratios in sodium channels. Eur Biophys J. 2008;38(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  113. Qiu H, Shen R, Guo W. Ion solvation and structural stability in a sodium channel investigated by molecular dynamics calculations. Biochim Biophys Acta. 2012;1818(11):2529–35.

    Article  CAS  PubMed  Google Scholar 

  114. Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomès R. Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. PNAS. 2013;110(28):11331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang Y, Voth GA. Combined metadynamics and umbrella sampling method for the calculation of ion permeation free energy profiles. J Chem Theory Comput. 2011;7(7):2277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cossio P, Marinelli F, Laio A, Pietrucci F. Optimizing the performance of bias-exchange metadynamics: folding a 48-residue LysM domain using a coarse-grained model. J Phys Chem B. 2010;114(9):3259–65.

    Article  CAS  PubMed  Google Scholar 

  117. Todorova N, Marinelli F, Piana S, Yarovsky I. Exploring the folding free energy landscape of insulin using bias exchange metadynamics. J Phys Chem B. 2009;113(11):3556–64.

    Article  CAS  PubMed  Google Scholar 

  118. Domene C, Barbini P, Furini S. Bias-exchange metadynamics simulations: an efficient strategy for the analysis of conduction and selectivity in ion channels. J Chem Theory Comput. 2015;11(4):1896–906.

    Article  CAS  PubMed  Google Scholar 

  119. Corry B, Thomas M. Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J Am Chem Soc. 2012;134(3):1840–6.

    Article  CAS  PubMed  Google Scholar 

  120. Furini S, Domene C. On conduction in a bacterial sodium channel. PLoS Comput Biol. 2012;8(4):e1002476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stock L, Delemotte L, Carnevale V, Treptow W, Klein ML. Conduction in a biological sodium selective channel. J Phys Chem B. 2013;117(14):3782–9.

    Article  CAS  PubMed  Google Scholar 

  122. Boiteux C, Vorobyov I, Allen TW. Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. PNAS. 2014;111(9):3454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ke S, Timin EN, Stary-Weinzinger A. Different inward and outward conduction mechanisms in NaVMs suggested by molecular dynamics simulations. PLoS Comput Biol. 2014;10(7):e1003746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. McCusker EC, Bagneris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, Wallace BA. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun. 2012;3:1102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zhang X, Xia M, Li Y, Liu H, Jiang X, Ren W, Wu J, DeCaen P, Yu F, Huang S, He J, Clapham DE, Yan N, Gong H. Analysis of the selectivity filter of the voltage-gated sodium channel NavRh. Cell Res. 2013;23(3):409–22.

    Article  CAS  PubMed  Google Scholar 

  126. Alam A, Jiang Y. Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol. 2009;16(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  127. Alam A, Jiang Y. High-resolution structure of the open NaK channel. Nat Struct Mol Biol. 2009;16(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  128. Vora T, Bisset D, Chung S-H. Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies. Biophys J. 2008;95(4):1600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Furini S, Domene C. Nonselective conduction in a mutated NaK channel with three cation-binding sites. Biophys J. 2012;103(10):2106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Noskov SY, Roux B. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J Gen Physiol. 2007;129(2):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 2007;76:387–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Darré L, Furini S, Domene C. Permeation and dynamics of an open-activated TRPV1 channel. J Mol Biol. 2015;108(2):37a.

    Google Scholar 

  133. Elokely KM, Palovack E, Delemotte L, Carnevale V, Klein ML. Understanding the molecular determinants of capsaicin mode of action. Biophys J. 2015;108(2):57a.

    Article  Google Scholar 

  134. Elokely K, Velisetty P, Delemotte L, Palovcak E, Klein ML, Rohacs T, Carnevale V. Understanding TRPV1 activation by ligands: insights from the binding modes of capsaicin and resiniferatoxin. PNAS. 2016;113(2):E137–45.

    Article  CAS  PubMed  Google Scholar 

  135. Faraldo-Gómez JD, Smith GR, Sansom MS. Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. Biophys J. 2003;85(3):1406–20.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998;95(6):771–8.

    Article  CAS  PubMed  Google Scholar 

  137. Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998;282(5397):2215–20.

    Article  CAS  PubMed  Google Scholar 

  138. Li J, Wen P-C, Moradi M, Tajkhorshid E. Computational characterization of structural dynamics underlying function in active membrane transporters. Curr Opin Struct Biol. 2015;31:96–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Pavlova A, Hwang H, Lundquist K, Balusek C, Gumbart JC. Living on the edge: simulations of bacterial outer-membrane proteins. Biochim Biophys Acta Biomembr. 2016;1858(7):1753–9.

    Article  CAS  Google Scholar 

  140. Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci. 2013;38(3):151–9.

    Article  CAS  PubMed  Google Scholar 

  141. Dror RO, Dirks RM, Grossman J, Xu H, Shaw DE. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys. 2012;41:429–52.

    Article  CAS  PubMed  Google Scholar 

  142. Khalili-Araghi F, Gumbart J, Wen P-C, Sotomayor M, Tajkhorshid E, Schulten K. Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol. 2009;19(2):128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oloo EO, Fung EY, Tieleman DP. The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter. J Biol Chem. 2006;281(38):28397–407.

    Article  CAS  PubMed  Google Scholar 

  144. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature. 2007;450(7169):515–21.

    Article  CAS  PubMed  Google Scholar 

  145. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature. 2005;437(7056):215–23.

    Article  CAS  PubMed  Google Scholar 

  146. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003;301(5633):610–5.

    Article  CAS  PubMed  Google Scholar 

  147. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510(7503):121–5.

    Article  CAS  PubMed  Google Scholar 

  148. Xu Y, Tao Y, Cheung LS, Fan C, Chen L-Q, Xu S, Perry K, Frommer WB, Feng L. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature. 2014;515(7527):448–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tao Y, Cheung LS, Li S, Eom J-S, Chen L-Q, Xu Y, Perry K, Frommer WB, Feng L. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature. 2015;527(7577):259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJ-M, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003;426(6962):39–44.

    Article  CAS  PubMed  Google Scholar 

  151. Oliveira ASF, Baptista AM, Soares CM. Inter-domain communication mechanisms in an ABC importer: a molecular dynamics study of the MalFGK 2 E complex. PLoS Comput Biol. 2011;7(8):e1002128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wen P-C, Tajkhorshid E. Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J. 2008;95(11):5100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Slotboom DJ. Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol. 2014;12(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  154. Boudker O, Verdon G. Structural perspectives on secondary active transporters. Trends Pharmacol Sci. 2010;31(9):418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Celik L, Schiøtt B, Tajkhorshid E. Substrate binding and formation of an occluded state in the leucine transporter. Biophys J. 2008;94(5):1600–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Huang X, Zhan C-G. How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J. 2007;93(10):3627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA. The mechanism of a neurotransmitter: sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell. 2008;30(6):667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Noskov SY, Roux B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J Mol Biol. 2008;377(3):804–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jensen MØ, Yin Y, Tajkhorshid E, Schulten K. Sugar transport across lactose permease probed by steered molecular dynamics. Biophys J. 2007;93(1):92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Law CJ, Almqvist J, Bernstein A, Goetz RM, Huang Y, Soudant C, Laaksonen A, Hovmöller S, Wang D-N. Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J Mol Biol. 2008;378(4):828–39.

    Article  PubMed  CAS  Google Scholar 

  161. Klauda JB, Brooks BR. Sugar binding in lactose permease: anomeric state of a disaccharide influences binding structure. J Mol Biol. 2007;367(5):1523–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Holyoake J, Sansom MS. Conformational change in an MFS protein: MD simulations of LacY. Structure. 2007;15(7):873–84.

    Article  CAS  PubMed  Google Scholar 

  163. Yin Y, Jensen MØ, Tajkhorshid E, Schulten K. Sugar binding and protein conformational changes in lactose permease. Biophys J. 2006;91(11):3972–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang Y, Tajkhorshid E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. PNAS. 2008;105(28):9598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dehez F, Pebay-Peyroula E, Chipot C. Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J Am Chem Soc. 2008;130(38):12725–33.

    Article  CAS  PubMed  Google Scholar 

  166. Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011;10(8):579–90.

    Article  CAS  PubMed  Google Scholar 

  167. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE. Crystal structure of rhodopsin: AG protein-coupled receptor. Science. 2000;289(5480):739–45.

    Article  CAS  PubMed  Google Scholar 

  168. Romo TD, Grossfield A, Pitman MC. Concerted interconversion between ionic lock substates of the β 2 adrenergic receptor revealed by microsecond timescale molecular dynamics. Biophys J. 2010;98(1):76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. PNAS. 2009;106(12):4689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sansom MS, Weinstein H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane α-helices. Trends Pharmacol Sci. 2000;21(11):445–51.

    Article  CAS  PubMed  Google Scholar 

  171. Louet M, Perahia D, Martinez J, Floquet N. A concerted mechanism for opening the GDP binding pocket and release of the nucleotide in hetero-trimeric G-proteins. J Mol Biol. 2011;411(1):298–312.

    Article  CAS  PubMed  Google Scholar 

  172. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE. Pathway and mechanism of drug binding to G-protein-coupled receptors. PNAS. 2011;108(32):13118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lau P-W, Grossfield A, Feller SE, Pitman MC, Brown MF. Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. J Mol Biol. 2007;372(4):906–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim Biophys Acta Biomembr. 2012;1818(2):241–51.

    Article  CAS  Google Scholar 

  175. Lee JY, Lyman E. Agonist dynamics and conformational selection during microsecond simulations of the A 2A adenosine receptor. Biophys J. 2012;102(9):2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD, Gawrisch K, Pitman MC, Reggio PH. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem. 2010;285(23):17954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi H-J, DeVree BT, Sunahara RK. Structure and function of an irreversible agonist-[bgr] 2 adrenoceptor complex. Nature. 2011;469(7329):236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rasmussen SG, Choi H-J, Fung JJ, Pardon E, Casarosa P, Chae PS, DeVree BT, Rosenbaum DM, Thian FS, Kobilka TS. Structure of a nanobody-stabilized active state of the [bgr] 2 adrenoceptor. Nature. 2011;469(7329):175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science. 2007;318(5854):1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EY, Velasquez J, Kuhn P, Stevens RC. A specific cholesterol binding site is established by the 2.8 Å structure of the human β 2-adrenergic receptor. Structure. 2008;16(6):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337(6091):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature. 2012;482(7384):237–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang X-P, Vardy E. Structural basis for molecular recognition at serotonin receptors. Science. 2013;340(6132):610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Khelashvili G, Albornoz PBC, Johner N, Mondal S, Caffrey M, Weinstein H. Why GPCRs behave differently in cubic and lamellar lipidic mesophases. J Am Chem Soc. 2012;134(38):15858–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta Biomembr. 2015;1848(9):1775–82.

    Article  CAS  Google Scholar 

  186. Paila YD, Tiwari S, Sengupta D, Chattopadhyay A. Molecular modeling of the human serotonin 1A receptor: role of membrane cholesterol in ligand binding of the receptor. Mol Biosyst. 2011;7(1):224–34.

    Article  CAS  PubMed  Google Scholar 

  187. Addona GH, Sandermann H, Kloczewiak MA, Husain SS, Miller KW. Where does cholesterol act during activation of the nicotinic acetylcholine receptor? Biochim Biophys Acta Biomembr. 1998;1370(2):299–309.

    Article  CAS  Google Scholar 

  188. Marsh D, Barrantes F. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. PNAS. 1978;75(9):4329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lefkowitz RJ, Sun J-P, Shukla AK. A crystal clear view of the β2-adrenergic receptor. Nat Biotechnol. 2008;26(2):189–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.J. thanks King’s College London for a Graduate Teaching Assistant (GTA) studentship. V.O. acknowledges a BBSRC-CASE studentship, in association with Pfizer Neusentis. C.D. acknowledges use of ARCHER, the UK National Supercomputing Service, the National Service for Computational Chemistry Software (NSCCS) and the Hartree Center. Research in the Domene group is supported by the Engineer and Physical Sciences Research Council (EPSRC) and the Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Domene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jorgensen, C., Oakes, V., Domene, C. (2017). Computer Simulations of Membrane Proteins. In: Chattopadhyay, A. (eds) Membrane Organization and Dynamics . Springer Series in Biophysics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-66601-3_15

Download citation

Publish with us

Policies and ethics