Skip to main content

Endophytic Actinobacteria for Sustainable Agricultural Applications

  • Chapter
  • First Online:
Endophytes: Crop Productivity and Protection

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 16))

Abstract

Endophytic actinobacteria have the capacity to establish intimate associations with plants and colonize their inner tissues without causing apparent disease symptoms. They can protect plants by producing bioactive compounds that act as plant growth promoters or biological control agents and, in return, obtain nutrition and protection from the host plant. The application of endophytic actinobacteria in agriculture has attracted increasing attention. We address isolation and identification methods and the occurrence and diversity of endophytic actinobacteria in agricultural crops. Attention is given to the roles of endophytic actinobacteria in plant growth and development and health promotion for sustainable agriculture is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3. Biotech 5:111–121

    Google Scholar 

  • Amorim CL, Ferreira AC, Carvalho MF, Afonso CM, Castro PML (2014) Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain. Appl Microbiol Biotechnol 98:1893–1905

    Article  CAS  PubMed  Google Scholar 

  • Araújo JM, Silva AC, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol 43:447–451

    Article  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagewadi ZK, Vernekar AG, Patil AY, Limaye AA, Jain VM (2011) Biodegradation of industrially important textile dyes by actinomycetes isolated from activated sludge. Biotechnol Bioinf Bioeng 1:351–360

    Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bignell DR, Huguet-Tapia JC, Joshi MV, Pettis GS, Loria R (2010) What does it take to be a pathogen: genomic insights from Streptomyces species. Antonie Van Leeuwenhoek 9:179–194

    Article  CAS  Google Scholar 

  • Bothwell TH (1995) Overview and mechanisms of iron regulation. Nutr Rev 53:237–245

    Article  CAS  PubMed  Google Scholar 

  • Bouizgarne B, Ben Aouamar AA (2014) Diversity of plant associated actinobacteria. In: Maheswari DK (ed) Bacterial diversity in sustainable agriculture. Springer International Publishing, Switzerland, pp 41–99

    Google Scholar 

  • Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17:239–252

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  PubMed  Google Scholar 

  • Carro L, Pujic P, Trujillo ME, Normand P (2013) Micromonospora is a normal inhabitant of actinorhizal nodules. J Biosci 38:685–693

    Article  PubMed  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay SK, Nandi B (1982) Inhibition of Helminthosporium oryzae and Alternaria solani by Streptomyces longisporus (Krasilnokov) Waksman. Plant Soil 69:171–175

    Article  Google Scholar 

  • Chen LM, Dick WA, Streeter JG, Hoitink HAJ (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant Soil 200:139–147

    Article  CAS  Google Scholar 

  • Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nature Biotechnol 24:1541–1550

    Article  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:208–218

    Article  CAS  PubMed  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Costa FG, Zucchi TD, Melo IS (2013) Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Braz Arch Biol Tech 56:948–955

    Article  Google Scholar 

  • de Oliveira MF, da Silva MG, Van Der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18 (6), a potential biocontrol agent. Res Microbiol 161:565–572

    Article  PubMed  Google Scholar 

  • Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475

    Article  CAS  PubMed  Google Scholar 

  • Dochhil H, Dkhar MS, Barman D (2013) Seed germination enhancing activity of endophytic Streptomyces isolated from indigenous ethno-medicinal plant Centella asiatica. Int J Pharm Biol Sci 4:256–262

    CAS  Google Scholar 

  • Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260

    Article  CAS  PubMed  Google Scholar 

  • Eichenlaub R, Gartemann K-H (2011) The Clavibacter michiganensis subspecies: molecular investigation of Gram-positive bacterial plant pathogens. Annu Rev Phytopathol 49:445–464

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GE, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA, St J Hardy GE, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Sussmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycetes Verrucosispora. J Antibiot 61:158–163

    Article  CAS  PubMed  Google Scholar 

  • Flügel M, Becker A, Gartemann K-H, Eichenlaub R (2012) Analysis of the interaction of Clavibacter michiganensis subsp. michiganensis with its host plant tomato by genome-wide expression profiling. J Biotechnol 160:42–54

    Article  PubMed  CAS  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JW, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    Article  CAS  PubMed  Google Scholar 

  • Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Keerthi Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R (2016) Plant growth promoting actinobacteria: a new avenue for enhancing the productivity and soil fertility of grain legumes. Springer, Singapore

    Google Scholar 

  • Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, New York, pp 299–314

    Chapter  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Article  Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81

    Article  CAS  Google Scholar 

  • Hastuti RD, Lestari Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J Biosci 19:155–162

    Article  Google Scholar 

  • Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764–767

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y, Trujillo ME, Martínez-Molina E, Yanase S, Miyanaga S, Obata T, Sakurai H, Saiki I, Fujita T, Furumai T (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702–3705

    Article  CAS  PubMed  Google Scholar 

  • Jiao JY, Wang HX, Zeng Y, Shen YM (2006) Enrichment for microbes living in association with plant tissues. J Appl Microbiol 100:830–837

    Article  PubMed  Google Scholar 

  • Jizba J, Sedmera P, Zima J, Beran M, Blumauerová M, Kandybin N, Samoukina G (1991) Macrotetrolide antibiotics produced by Streptomyces globisporus. Folia Microbiol 36:437–443

    Article  CAS  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Kaewkla O, Franco CM (2013) Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 65:384–393

    Article  PubMed  Google Scholar 

  • Kampapongsa D, Kaewkla O (2016) Biodiversity of endophytic actinobacteria from jasmine rice (Oryza sativa L. KDML 105) grown in Roi-Et Province, Thailand and their antimicrobial activity against rice pathogens. Ann Microbiol 66:587–595

    Article  CAS  Google Scholar 

  • Kanchanadevi D, Hemashenpagam N, Sandhya R (2013) Characterization and plant growth promoter production of endophytic actinomycetes isolated from agricultural crops. Pharmanest 4:808–827

    Google Scholar 

  • Kaur H, Gangwar M, Kalia A (2015) Diversity of actinomycetes from fodder leguminous plants and their biocontrol potential. Int J Adv Res 3:1141–1151

    Google Scholar 

  • Kekuda TP (2016) Isolation, characterization and antimicrobial potential of endophytic actinomycetes. Int J Curr Microbiol App Sci 5:100–116

    Article  Google Scholar 

  • Khedkar S, Shanker R (2015) Isolation and classification of a soil actinomycete capable of sulphur-specific biotransformation of dibenzothiophene, benzothiophene and thianthrene. J Appl Microbiol 118:62–74

    Article  CAS  PubMed  Google Scholar 

  • Kreuze JF, Suomalainen S, Paulin L, Valkonen JP (1999) Phylogenetic analysis of 16S rRNA genes and PCR analysis of the nec1 gene from Streptomyces spp. causing common scab, pitted scab, and netted scab in Finland. Phytopathology 89:462–469

    Article  CAS  PubMed  Google Scholar 

  • Kunoh H (2002) Endophytic actinomycetes: attractive biocontrol agents. J Gen Plant Pathol 68:249–252

    Article  CAS  Google Scholar 

  • Labeda D (1987) Actinomycete taxonomy: generic characterization. Dev Ind Microbiol 28:115–121

    Google Scholar 

  • Le XH, Franco CM, Ballard RA, Drew EA (2015) Isolation and characterisation of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.). Plant Soil 405:13–24

    Article  CAS  Google Scholar 

  • Le XH, Ballard RA, Franco CMM (2016) Effects of endophytic Streptomyces and mineral nitrogen on Lucerne (Medicago sativa L.) growth and its symbiosis with rhizobia. Plant Soil 405:25–34

    Article  CAS  Google Scholar 

  • Lee SO, Choi GJ, Choi YH, Jang KS, Park DJ, Kim CJ, Kim JC (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18–1741–1746

    Google Scholar 

  • Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G (2012) Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie Van Leeuwenhoek 101:515–527

    Article  PubMed  Google Scholar 

  • Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Lin X, Zhang L, Liu N, Huang Y (2013) Isolation, classification and biosynthetic potential of endophytic actinomycetes from Stemona. Acta Microbiol Sin 52:389–395

    Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyro sequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. ‎Sci Rep 4:6389

    Google Scholar 

  • Masand M, Jose PA, Menghani E, Jebakumar SRD (2015) Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 31:1863–1875

    Article  CAS  PubMed  Google Scholar 

  • Meguro A, Ohmura Y, Hasegawa S, Shimizu M, Nishimura T, Kunoh H (2006) An endophytic actinomycete, Streptomyces sp. MBR-52, that accelerates emergence and elongation of plant adventitious roots. Actinomycetologica 20:1–9

    Article  CAS  Google Scholar 

  • Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280

    Article  CAS  PubMed  Google Scholar 

  • Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A, Takahashi Y (2015) Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot 68:368–372

    Article  CAS  PubMed  Google Scholar 

  • Minotto E, Milagre LP, Oliveira MT, Van Der Sand ST (2014) Enzyme characterization of endophytic actinobacteria isolated from tomato plants. J Adv Sci Res 5:16–23

    Google Scholar 

  • Monteiro-Vitorello CB, Camargo LE, Van Sluys MA, Kitajima JP, Truffi D, do Amaral AM, Harakava R, de Oliveira JC, Wood D, de Oliveira MC, Miyaki C, Takita MA, da Silva AC, Furlan LR, Carraro DM, Camarotte G, Almeida NF Jr, Carrer H, Coutinho LL, El-Dorry HA, Ferro MI, Gagliardi PR, Giglioti E, Goldman MH, Goldman GH, Kimura ET, Ferro ES, Kuramae EE, Lemos EG, Lemos MV, Mauro SM, Machado MA, Marino CL, Menck CF, Nunes LR, Oliveira RC, Pereira GG, Siqueira W, de Souza AA, Tsai SM, Zanca AS, Simpson AJ, Brumbley SM, Setúbal JC (2004) The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli. Mol Plant Microbe Interact 17:827–836

    Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 26:193–203

    Article  CAS  Google Scholar 

  • Okubo T, Ikeda S, Sasaki K, Ohshima K, Hattori M, Sato T, Minamisawa K (2014) Phylogeny and functions of bacterial communities associated with field-grown rice shoots. Microbes Environ 29:329–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Passari AK, Mishra VK, Gupta VK, Yadav MK, Saikia R, Singh BP (2015) In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS ONE 10:e0139468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801

    Article  CAS  Google Scholar 

  • Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183

    Article  CAS  Google Scholar 

  • Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes AC (2014) Unravelling the diversity of grapevine microbiome. PLoS ONE 9:e85622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prakash O, Nimonkar Y, Munot H, Sharma A, Vemuluri VR, Chavadar MS, Shouche YS (2014) Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera. Int J Syst Evol Microbiol 64:3427–3433

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL, Xu LH, Li WJ (2008) Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Chen HH, Zhao GZ, Li J, Zhu WY, Xu LH, Jiang JH, Li WJ (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4:522–531

    Article  PubMed  Google Scholar 

  • Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    Article  CAS  PubMed  Google Scholar 

  • Rafik E, Rahal EK, Ahmed L (2014) Effects of selected endophyte actinomycete on growth, nodulation, nitrogen fixation and yield for three leguminous. Int J Curr Microbiol App Sci 3:733–742

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rungin S, Indanand C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  PubMed  Google Scholar 

  • Saddler GS, Messenber-Guimaraes (2012) Genus Curtobacterium. In: Whitman W, Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Ludwig W, Suzuki K-i, Parte A (eds) Bergey’s manual of systematic bacteriology, vol 5: The actinobacteria. Springer, New York, pp 887–895

    Google Scholar 

  • Sadeghi A, Hessan AR, Askari H, Aghighi S, Shahidi Bonjar GH (2006) Biological control potential of two Streptomyces isolates on Rhizoctonia solani, the causal agent of damping-off of sugar beet. Pak J Biol Sci 9:904–910

    Article  Google Scholar 

  • Sardi P, Sarachhi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilised roots. Appl Environ Microbiol 58:2691–2693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savi DC, Haminiuk CWI, Sora GTS, Adamoski DM, Kenski J, Winnischofer SMB, Glienke C (2015) Antitumor, antioxidant and antibacterial activities of secondary metabolites extracted by endophytic actinomycetes isolated from Vochysia divergens. Int J Pharm Chem Biol Sci 5:347–356

    Google Scholar 

  • Schulz B, Boyle C (2006) Microbial root endophytes. In: Sieber TN (ed) What are endophytes?, vol 9. Springer, Berlin, pp 1–13

    Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Sharma M (2014) Actinomycetes: source, identification, and their applications. Int J Curr Microbiol Appl Sci 3:801–832

    CAS  Google Scholar 

  • Sheil D (1999) Tropical forest diversity, environmental change and species augmentation: after the intermediate disturbance hypothesis. J Veg Sci 10:851–860

    Article  Google Scholar 

  • Shi YW, Lou K, Li C (2009) Promotion of plant growth by phytohormone producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Shirling ET, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16:313–340

    Google Scholar 

  • Shutsrirung A, Chromkaew Y, Pathom-Aree W, Choonluchanon S, Boonkerd N (2013) Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr 59:322–330

    Article  CAS  Google Scholar 

  • Singh R, Dube AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci 5:106–116

    Google Scholar 

  • Singh SP, Gaur R (2016) Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea. J Appl Microbiol 121:506–518

    Article  CAS  PubMed  Google Scholar 

  • Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 58:319–325

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 3–29

    Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 117–143

    Google Scholar 

  • Sun Q, Rost TL, Matthews MA (2006) Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae). Am J Bot 93:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    Article  CAS  Google Scholar 

  • Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87

    Article  CAS  PubMed  Google Scholar 

  • Tchinda RA, Boudjeko T, Simao-Beaunoir AM, Lerat S, Tsala É, Monga E, Beaulieu C (2016) Morphological, physiological, and taxonomic characterization of actinobacterial isolates living as endophytes of cacao pods and cacao seeds. Microbes Environ 31:56–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Thanaboripat D, Thawai C, Kittiwongwattana C, Laosinwattana C, Koohakan P, Parinthawong N (2015) Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa). J Antibiot 68:680–684

    Article  CAS  PubMed  Google Scholar 

  • Tian XL, Cao LX, Tan HM, Zeng QG, Jia YY, Han WQ, Zhou SN (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309

    Article  Google Scholar 

  • Tian XL, Cao LX, Tan HM, Han WQ, Chen M, Liu YH, Zhou SN (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53:700–707

    Article  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E (2007) Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Trujillo ME, Riesco R, Benito P, Carro L (2015) Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol 6:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Hiejden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756

    Article  PubMed  Google Scholar 

  • Vernekar JV, Ghatge MS, Deshpande VV (1999) Alkaline protease inhibitor: a novel class of antifungal proteins against phytopathogenic fungi. Biochem Biophys Res Commun 262:702–707

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA (2006) A survey of genetic variation in Streptomyces isolates causing potato common scab in the United States. Phytopathology 96:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whitman W, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Ludwig W, Suzuki K, Parte A (eds) (2012) Bergey’s manual of systematic bacteriology, vol 5: The actinobacteria, part A and B. Springer, New York

    Google Scholar 

  • Xing K, Bian GK, Qin S, Klenk HP, Yuan B, Zhang YJ, Li WJ, Jiang JH (2012) Kibdelosporangium phytohabitans sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. containing 1-aminocyclopropane-1-carboxylic acid deaminase. Antonie Van Leeuwenhoek 101:433–441

    Article  CAS  PubMed  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ren K, Zhang L (2012) Screening and preliminary identification of medicinal plants endophytic actinomycetes used for inhibiting penicillin-resistant Staphylococcus aureus. Int J Biol 4:119–124

    Article  Google Scholar 

Download references

Acknowledgements

M.F. Carvalho acknowledges Investigator FCT program supported by Fundação para a Ciência e a Tecnologia (FCT), Fundo Social Europeu (FSE) and Programa Operacional Potencial Humano. R.S. Oliveira and Y. Ma thank the support of FCT through the research grants SFRH/BPD/85008/2012 and SFRH/BPD/76028/2011, FSE and Programa Operacional do Capital Humano (POCH). This work was partly financed by Portuguese national funds through Programa Operacional Competitividade e Internacionalização (POCI), Project 3599 – Promover a Produção Científica e Desenvolvimento Tecnológico e a Constituição de Redes Temáticas (3599-PPCDT) and Fundo Europeu de Desenvolvimento Regional (FEDER) under Project POCI-01-0145-FEDER-016801 and by FCT under Project PTDC/AGR-TEC/1140/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carvalho, M.F., Ma, Y., Oliveira, R.S., Freitas, H. (2017). Endophytic Actinobacteria for Sustainable Agricultural Applications. In: Maheshwari, D., Annapurna, K. (eds) Endophytes: Crop Productivity and Protection. Sustainable Development and Biodiversity, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-66544-3_8

Download citation

Publish with us

Policies and ethics