Advertisement

Bacterial Endophytes for Ecological Intensification of Agriculture

  • Shrivardhan Dheeman
  • Dinesh K. MaheshwariEmail author
  • Nitin Baliyan
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)

Abstract

Intensification in modern agriculture using endophytic bacteria employs to neglect hurdles of sustainable agriculture. Endophytes are contributing in current and future progresses of ecological intensification. Such microorganisms are the key driver to establish equilibrium between growing demand of food for ever-increasing population and agricultural production. Intensification and extensification to feed human population by applying beneficial soil microorganisms, either alone or in combination, have major contribution for achieving sustainable agriculture. Exploitation of interactions’ process between endophytic organisms and plants contributes to plant growth promotion for crop productivity enhancement and overall ecological intensification. Studying ecology of bacterial endophyte (both above- and below-ground bacteria including other associative beneficial bacteria) offers potential for plant growth and health promotion so as to increase nutrient values in plant by fortifying nutrient or phytoremediation of citrant and recalcitrant pollutant in soil ecology. The consequences of endophytism including invasion, colonization, niche stabilization, and acquisition provide feasible approach for ecological intensification through stimulated plant growth by their phytohormone production and managing nutrient by facilitating mineralization of essential nutrients like P, K, and Zn. Nitrogen fixation by azotrophic endophyte is another beneficial aspect to contribute in ecological intensification of agriculture. Disease management credit productivity enhancement via indirect way and thus corroborate in intensification of agriculture.

Keywords

Endophyte Agricultural intensification Nutrient management Disease control 

References

  1. Abraham A, Philip S, Jacob CK, Jayachandran K (2013) Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. Biocontrol 58(5):675–684CrossRefGoogle Scholar
  2. Aeron A, Chauhan PS, Dubey RC, Maheshwari DK, Bajpai VK (2014) Root nodule bacteria from Clitoria ternatea L. are putative invasive nonrhizobial endophytes. Can J Microbiol 61(2):131–142PubMedCrossRefGoogle Scholar
  3. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univer Sci 26(1):1–20CrossRefGoogle Scholar
  4. Albermann S, Linnemannstöns P, Tudzynski B (2013) Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. App Microbiol Biotechnol 97(7):2979–2995CrossRefGoogle Scholar
  5. Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47(3):229–236PubMedCrossRefGoogle Scholar
  6. Aserse AA, Rasanen LA, Aseffa F, Hailemariam A, Lindstrom K (2013) Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. App Microbiol Biotechnol 97:10117e10134Google Scholar
  7. Assessment ME (2005) Millennium ecosystem assessment findings. Millennium Ecosystem AssessmentGoogle Scholar
  8. Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essay 7(28):2431–2439Google Scholar
  9. Bacon CW, Hinton DM (2007) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated Bacteria. Springer, Netherlands, pp 155–194Google Scholar
  10. Bacon CW, White J (2000) Microbial endophytes. Marcel Dekker Inc., New York, 10016 p 500Google Scholar
  11. Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238PubMedCrossRefGoogle Scholar
  12. Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. Vitro Cell Dev Biol Plant 37(6):730–741CrossRefGoogle Scholar
  13. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  14. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  15. Balachandar D, Sandhiya GS, Sugitha TC, Kumar K (2006) Flavonoids and growth hormones influence endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. World J Microbiol Biotechnol 22:707–712CrossRefGoogle Scholar
  16. Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syt Evol Microbiol 60(3):627–632Google Scholar
  17. Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Ann Rev Phytopathol 33(1):145–172CrossRefGoogle Scholar
  18. Bejarano A, Ramírez-Bahena MH, Velázquez E, Peix A (2014) Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae):of the genus Bradyrhizobium. Syst Appl Microbiol 37(7):533–540PubMedCrossRefGoogle Scholar
  19. Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112(3):919–929PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blumenstein K, Albrectsen BR, Martín JA, Hultberg M, Sieber TN, Helander M, Witzell J (2015) Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. Biocontrol 60(5):655–667CrossRefGoogle Scholar
  21. Bogino PC, Oliva MDLM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14(8):15838–15859PubMedPubMedCentralCrossRefGoogle Scholar
  22. Boonsnongcheep P, Prathanturarug S, Takahashi Y, Matsumoto A (2016) Rhizobium puerariae sp. nov., an endophytic bacterium from the root nodules of the medicinal plant Pueraria candollei var. candollei. Int J Syt Evol Microbiol 66(3):1236–1241Google Scholar
  23. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  24. Canny MJ (1995) Apoplastic water and solute movement: new rules for an old space. Ann Rev Plant Biol 46(1):215–236CrossRefGoogle Scholar
  25. Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour-the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol fiw114Google Scholar
  26. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM, Tejedor C, Velázquez E, Peix A (2013) Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syt Evol Microbiol 63(12):4433–4438Google Scholar
  27. Carro L, Flores-Félix JD, Ramírez-Bahena MH, García-Fraile P, Martínez-Hidalgo P, Igual JM, Tejedor C, Peix A, Velázquez E. (2014) Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syt Evol Microbiol 64(9):3028–3033Google Scholar
  28. Carro L, Riesco R, Spröer C, Trujillo ME (2016) Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 39(4):237–242PubMedCrossRefGoogle Scholar
  29. Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E, Bedmar EJ (2011) Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int J Syt Evol Microbiol 61(12):2922–2927Google Scholar
  30. Chahboune R, Carro L, Peix A, Ramírez-Bahena MH, Barrijal S, Velázquez E, Bedmar EJ (2012) Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 35(5):302–305PubMedCrossRefGoogle Scholar
  31. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M et al (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66(12):5437–5447PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX (2011) Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syt Evol Microbiol 61(10):2496–2502Google Scholar
  33. Chang L, Ramireddy E, Schmülling T (2013) Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot 64(16):5021–5032PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen WF, Sui XH, Wang ET, Chen WX (2011) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int J Syt Evol Microbiol 61(3):580–586Google Scholar
  35. Chernin LS (2011) Quorum-sensing signals as mediators of PGPRs’ beneficial traits. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, Germany, pp 209–236CrossRefGoogle Scholar
  36. Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278PubMedPubMedCentralCrossRefGoogle Scholar
  37. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  38. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678CrossRefGoogle Scholar
  39. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197PubMedCrossRefGoogle Scholar
  40. Conn CE, Day FP (1996) Response of root and cotton strip decay to nitrogen amendment along a barrier island dune chronosequence. Can J Microbiol 74(2):276–284Google Scholar
  41. Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70(11):6407–6413PubMedPubMedCentralCrossRefGoogle Scholar
  42. Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Interac 7(4):440–448CrossRefGoogle Scholar
  43. Côte F, Tomekpe K, Staver C, Depigny S, Lescot T, Markham R (2008) Agro-ecological intensification in banana and plantain (Musa spp.): an approach to develop more sustainable cropping systems for both smallholder farmers and large-scale commercial producers. In: IV International symposium on Banana: International conference on banana and plantain in Africa: Harnessing International, pp 457–463Google Scholar
  44. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47CrossRefGoogle Scholar
  45. Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JRM, Andrade DS et al. (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63(11):4167–4173Google Scholar
  46. Dall’Agnol RF, Ribeiro RA, Delamuta JRM, Ormeño-Orrillo E, Rogel MA, Andrade DS et al. (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.): with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64(9):3222–3229Google Scholar
  47. Darbyshire JF, Greaves MP (1973) Bacteria and protozoa in the rhizosphere. Pestic Sci 4:349–360CrossRefGoogle Scholar
  48. Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58(2):195–201Google Scholar
  49. de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417PubMedCrossRefGoogle Scholar
  50. De Meyer SE, Cnockaert M, Ardley JK, Maker G, Yates R, Howieson JG, Vandamme P (2013a) Burkholderia sprentiae sp. nov. isolated from Lebeckia ambigua root nodules. Int J Sys Evol Microbiol 63(11):3950–3957Google Scholar
  51. De Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G, Howieson JG, Vandamme P (2013b) Burkholderia rhynchosiae sp. nov. isolated from Rhynchosia ferulifolia root nodules. Int J Sys Evol Microbiol 63(11):3944–3949Google Scholar
  52. De Meyer SE, Cnockaert M, Ardley JK, Van Wyk BE, Vandamme PA, Howieson JG (2014) Burkholderia dilworthii sp. nov. isolated from Lebeckia ambigua root nodules. Int J Sys Evol Microbiol 64(4):1090–1095Google Scholar
  53. De Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A (2015a) Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Sys Evol Microbiol 65(10):3419–3426Google Scholar
  54. De Meyer SE, De Beuf K, Vekeman B, Willems A (2015b) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11CrossRefGoogle Scholar
  55. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A (2016) Mesorhizobium calcicola sp. nov. Mesorhizobium waitakense sp. nov. Mesorhizobium sophorae sp. nov. Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Sys Evol Microbiol 66(2):786–795Google Scholar
  56. De Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562–1575. doi: 10.1590/S1517-838220120004000041 PubMedPubMedCentralCrossRefGoogle Scholar
  57. de Torres-zabala M, Bennett MH, Mansfield JW, R. Egea, L. Bo, and M. Grant (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26Google Scholar
  58. Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, De Stefano M (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Env Microbiol 10(10):2824–2841CrossRefGoogle Scholar
  59. Deng ZS, Zhao LF, Xu L, Kong ZY, Zhao P, Qin W, Wei GH (2011) Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of Sphaerophysa salsula. Int J Sys Evol Microbiol 61(3):665–669Google Scholar
  60. Dent KC, Stephen JR, Finch-Savage WE (2004) Molecular profiling of microbial communities associated with seeds of Beta vulgaris subsp. vulgaris (sugar beet). J Microbiol Methods 56(1):17–26PubMedCrossRefGoogle Scholar
  61. Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M (2016) Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria, and their efficacy in the groundnut (Arachis hypogaea). Ann Microbiol 1–11Google Scholar
  62. Dias AC, Costa FE, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Melo IS (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25(2):189–195Google Scholar
  63. Doley P, Jha DK (2016) Antimicrobial activity of bacterial endophytes from medicinal endemic plant Garcinia lancifolia Roxb. Ann Plant Sci 4(12):1243–1247Google Scholar
  64. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106(1):85–125PubMedCrossRefGoogle Scholar
  65. Dugué P, Vayssieres J, Chia E, Ouedraogo S, Havard M, Coulibaly D, Vall E (2011) L’intensification écologique: réflexions pour la mise en pratique de ce concept dans les zones de savane d’Afrique de l’Ouest. In: Partenariat, modélisation, expérimentations: quelles leçons pour la conception de l’innovation et l’intensification écologique? p 15Google Scholar
  66. Dutta S, Mishra AK, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40(2):452–461CrossRefGoogle Scholar
  67. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209PubMedPubMedCentralCrossRefGoogle Scholar
  68. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629CrossRefGoogle Scholar
  69. Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46(11):1036–1041PubMedCrossRefGoogle Scholar
  70. Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369(1–2):115–129CrossRefGoogle Scholar
  71. Estrella MJ, Munoz S, Soto MJ, Ruiz O, Sanjuan J (2009) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado river basin (Argentina). Appl Environ Microbiol 75:1088e1098Google Scholar
  72. Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Valetti L (2010) Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev MicrobiolGoogle Scholar
  73. Faria DC, Dias ACF, Melo IS, de Carvalho Costa FE (2013) Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol 29(2):217–221PubMedCrossRefGoogle Scholar
  74. Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287(1):8–14PubMedCrossRefGoogle Scholar
  75. Flores-Félix JD, Carro L, Velázquez E, Valverde Á, Cerda-Castillo E, García-Fraile P, Rivas R (2013) Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 63(3):821–826PubMedCrossRefGoogle Scholar
  76. Flores-Félix JD, Carro L, Ramírez-Bahena MH, Tejedor C, Igual JM, Peix A, Velázquez E (2014a) Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 64(1):83–87PubMedCrossRefGoogle Scholar
  77. Flores-Félix JD, Mulas R, Ramírez-Bahena MH, Cuesta MJ, Rivas R, Brañas J, Velázquez E (2014b) Fontibacillus phaseoli sp. nov. isolated from Phaseolus vulgaris nodules. Antonie Van Leeuwenhoek 105(1):23–28PubMedCrossRefGoogle Scholar
  78. Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61(6):485–493PubMedCrossRefGoogle Scholar
  79. Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Chotte JL (2002) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153(1):81–89CrossRefGoogle Scholar
  80. French E, Kim BS, Iyer-Pascuzzi AS (2016) Mechanisms of quantitative disease resistance in plants. In: Seminars in cell developmental biology May 19 Academic PressGoogle Scholar
  81. Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Progress 10Google Scholar
  82. Germida J, Siciliano S (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soil 33(5):410–415CrossRefGoogle Scholar
  83. Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26(1):43–50Google Scholar
  84. Ghosh PK, De TK, Maiti TK (2015a) Ascorbic acid production in root, nodule and Enterobacter spp. (Gammaproteobacteria) isolated from root nodule of the legume Abrus precatorius L. Biocatal Agric Biotechnol 4(2):127–134Google Scholar
  85. Ghosh PK, Kumar De T, Maiti TK (2015b) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola): isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015Google Scholar
  86. Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trend Plant Sci 5(2):56–60CrossRefGoogle Scholar
  87. Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427PubMedPubMedCentralGoogle Scholar
  88. Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87PubMedCrossRefGoogle Scholar
  89. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecol 55(1):21–37CrossRefGoogle Scholar
  90. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412CrossRefGoogle Scholar
  91. Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B (2016) Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 66(1):62–69PubMedCrossRefGoogle Scholar
  92. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H, Quinones MA, Peix A (2013) Definition of a novel symbiovar (sv. retamae): within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 36(4):218–223PubMedCrossRefGoogle Scholar
  93. Gupta VK, Utkhede RS (1986) Factors affecting the production of antifungal compounds by Enterobacter aerogenes and Bacillus subtilis, antagonists of Phytophthora cactorum. J Phytopathol 117(1):9–16CrossRefGoogle Scholar
  94. Gusain YS, Kamal R, Mehta CM, Singh US, Sharma AK (2015) Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. J Environ Biol 36(1):301PubMedGoogle Scholar
  95. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Netherlands, pp 133–143CrossRefGoogle Scholar
  96. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914CrossRefGoogle Scholar
  97. Hallmann J, Davies KG, Sikora R (2009) 17 Biological control using microbial pathogens, Endophytes and Antagonists. Root-knot Nematodes, 380Google Scholar
  98. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trend Microbiol 16(10):463–471CrossRefGoogle Scholar
  99. Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Cont 51(1):16–25CrossRefGoogle Scholar
  100. Hartmann A, Rothballer M, Hense BA, Schröder P (2015) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. The plant microbiome and its importance for plant and human health, 41Google Scholar
  101. Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 8(9):e73132PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hoque MS, Broadhurst LM, Thrall PH (2011a) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae):across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309PubMedCrossRefGoogle Scholar
  103. Hoque MS, Broadhurst LM, Thrall PH (2011b) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae):across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309PubMedCrossRefGoogle Scholar
  104. Howieson JG, De Meyer SE, Vivas-Marfisi A, Ratnayake S, Ardley JK, Yates RJ (2013) Novel Burkholderia bacteria isolated from Lebeckia ambigua–a perennial suffrutescent legume of the fynbos. Soil Biol Biochem 60:55–64CrossRefGoogle Scholar
  105. Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fertil Soils 44(1):155–162CrossRefGoogle Scholar
  106. James EK, Olivares FL, Baldani JI, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue Sorghum bicolor L. Moench J Exp Bot 48(3):785–798CrossRefGoogle Scholar
  107. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microb Interact 15(9):894–906CrossRefGoogle Scholar
  108. Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Green J Agric Sci 3(2):73–84Google Scholar
  109. Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98PubMedCrossRefGoogle Scholar
  110. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Chen WF (2015) Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Mcrobiol 65(2):497–503Google Scholar
  111. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Chen WF (2015b) Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 65(2):399–406PubMedCrossRefGoogle Scholar
  112. Kandel SL, Herschberger N, Kim SH, Doty SL (2015) Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 55(4):1765–1772CrossRefGoogle Scholar
  113. Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL (2012) Switchgrass establishment and seeding year production can be improved by inoculation with rhizosphere endophytes. Biomass Bioenergy 47:295–301CrossRefGoogle Scholar
  114. Kesari V, Ramesh AM, Rangan L (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. BioMed Res Int, 2013Google Scholar
  115. Khalid R, Zhang YJ, Ali S, Sui XH, Zhang XX, Amara U, Hayat R (2015) Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in rainfed Pothwar, Pakistan. Antonie Van Leeuwenhoek 107(1):281–290PubMedCrossRefGoogle Scholar
  116. Khalifa AY, Almalki MA (2015) Isolation and characterization of an endophytic bacterium, Bacillus megaterium BMN1, associated with root-nodules of Medicago sativa L. growing in Al-Ahsaa region, Saudi Arabia. Annal Microbiol 65(2):1017–1026Google Scholar
  117. Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695Google Scholar
  118. Khush GS (2001) Green revolution: the way forward. Nature Rev Genet 2(10):815–822PubMedCrossRefGoogle Scholar
  119. Kittiwongwattana C, Thawai C (2013) Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63(10):3823–3828PubMedCrossRefGoogle Scholar
  120. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 94(11):1259–1266CrossRefGoogle Scholar
  121. Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201(2):599–609PubMedCrossRefGoogle Scholar
  122. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. Microb Endophyt 19:199–233Google Scholar
  123. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Env Microbiol 6:1244–1251CrossRefGoogle Scholar
  124. Kumar S, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur J Soil Biol 45:334–340CrossRefGoogle Scholar
  125. Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252(1):151–167CrossRefGoogle Scholar
  126. Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS, Bais HP (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tiss Org Cul 185(3):353–359CrossRefGoogle Scholar
  128. Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell Environ 135(1):53–60CrossRefGoogle Scholar
  129. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX, (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409e1413Google Scholar
  130. Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH, Wen CZ, Young CC (2015) Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie Van Leeuwenhoek 107(3):773–784PubMedCrossRefGoogle Scholar
  131. Liu TY, Li Y, Liu XX, Sui XH, Zhang XX, Wang ET, Puławska J (2012) Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 35(7):415–420PubMedCrossRefGoogle Scholar
  132. Liu WY, Ridgway HJ, James TK, James EK, Chen WM, Sprent JI, Andrews M (2014) Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae):in New Zealand soils. Microbial Ecol 68(3):542–555CrossRefGoogle Scholar
  133. Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606CrossRefGoogle Scholar
  134. López-López A, Rogel-Hernández MA, Barois I, Ceballos AIO, Martínez J, Ormeño-Orrillo E, Martínez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala, Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62(9):2264–2271PubMedCrossRefGoogle Scholar
  135. Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-Lysozime-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiol Ecol 29:365–377CrossRefGoogle Scholar
  136. Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH, Kang LH (2014) Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64(6):1900–1905PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81(1–4):373–383PubMedCrossRefGoogle Scholar
  138. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753PubMedCrossRefGoogle Scholar
  139. Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of Urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Ind J Microbiol 50(4):425–431CrossRefGoogle Scholar
  140. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotech 4(4):523–553CrossRefGoogle Scholar
  141. Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One 6(9):e24750PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mapelli F, Borin S, Daffonchio D (2012) Microbial diversity in deep hypersaline anoxic basins. In: Adaption of microbial life to environmental extremes, Springer, Vienna, pp 21–36Google Scholar
  143. Maropola MKA, Ramond JB, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (l. Moench). J Microbiol Method 112:104–117CrossRefGoogle Scholar
  144. Matson PA, Vitousek PM (2006) Agricultural intensification: will land spared from farming be land spared for nature? Conserv Biol 20(3):709–710PubMedCrossRefGoogle Scholar
  145. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509PubMedCrossRefGoogle Scholar
  146. Mavengere NR, Ellis AG, Le Roux JJ (2014) Burkholderia aspalathi sp. nov., isolated from root nodules of the south African legume Aspalathus abietina Thunb. Int J Syst Evol Microbiol 64(6):1906–1912Google Scholar
  147. Mehboob I, Naveed M, Zahir ZA (2009) Rhizobial association with non-legumes: mechanisms and applications. Crit Rev Plant Sci 28(6):432–456CrossRefGoogle Scholar
  148. Menéndez E, Ramírez-Bahena MH, Carro L, Fernández-Pascual M, Klenk HP, Velázquez E, Scotti MR (2016) Paenibacillus periandrae sp. nov., isolated from nodules of Periandra mediterranea. Int J Syst Evol Microbiol 66(4):1838–1843PubMedCrossRefGoogle Scholar
  149. Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Willems A (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia):and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60(3):664–674PubMedCrossRefGoogle Scholar
  150. Mercado-Blanco J, Alós E, Rey MD, Prieto P (2016) Pseudomonas fluorescens PICF7 displays endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol Ecol fiw 092Google Scholar
  151. Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42(3):399–407PubMedCrossRefGoogle Scholar
  152. Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX, Zhang XX, Mhamdi R (2014) Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 64(5):1501–1506PubMedCrossRefGoogle Scholar
  153. Mohite B (2013) Isolation and characterization of indole acetic acid (IAA): producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nut 13(3):638–649Google Scholar
  154. Mommer L, Hinsinger P, Prigent-Combaret C, Visser EJ (2016) Advances in the rhizosphere: stretching the interface of life. Plant Soil (2016) 407:1Google Scholar
  155. M’piga P, Belanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporumf spp. radicis-lycopersiciin tomato plants treated with the endophytic bacterium Pseudomonas fluorescensstrain 63-28. Physiol Mol Plant Pathol 50(5):301–320Google Scholar
  156. Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.): roots. Biol Fert Soil 42(2):97–108Google Scholar
  157. Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soil 50(2):249–262Google Scholar
  158. Nicoletti R, Ferranti P, Caira S, Misso G, Castellano M, Di Lorenzo G, Caraglia M (2014) Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World J Microbiol Biotechnol 30(3):1047–1052PubMedCrossRefGoogle Scholar
  159. Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors 12(3):2851–2873PubMedPubMedCentralCrossRefGoogle Scholar
  160. Old KM, Nicolson TH (1978) The root cortex as part of a microbial continuum. In: Loutit MV, Miles JAR (eds) Microbial ecol. Springer, Berlin, pp 291–294Google Scholar
  161. Ozawa T, Ohwaki A, Okumura K (2003) Isolation and characterization of diazotrophic bacteria from the surface-sterilized roots of some legumes. Sci Rep Grad Sch Agric Biol Sci 55:29–36Google Scholar
  162. Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fert Soil 46(8):807–816CrossRefGoogle Scholar
  163. Pandya M, Kumar GN, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett 348(1):58–65PubMedCrossRefGoogle Scholar
  164. Patil NB, Gajbhiye M, Ahiwale SS, Gunjal AB, Kapadnis BP (2011) Optimization of Indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from Sugarcane. Int J Environ Sci 2(1):295Google Scholar
  165. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Ann Rev Cell Devel Biol 28:489–521CrossRefGoogle Scholar
  166. Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Planta 121(2):305–312CrossRefGoogle Scholar
  167. Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66(3):402–408CrossRefGoogle Scholar
  168. Quadt-Hallman A, Benhamou N, Kloepper JW (1997a) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582CrossRefGoogle Scholar
  169. Quadt-Hallman A, Hallman J, Kloepper JW (1997b) Bacterial endophytes in cotton: location and interaction with other plant associated bacteria. Can J Microbiol 43:254–259CrossRefGoogle Scholar
  170. Radl V, Simoes-Araujo JL, Leite J, Passos SR, Martins LMV, Xavier GR, Rumjanek NG, Baldani JI, Zilli JE, (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725e730Google Scholar
  171. Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protec 37:35–41CrossRefGoogle Scholar
  172. Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E, Peix A (2016) Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 39(6):378–383PubMedCrossRefGoogle Scholar
  173. Ramírez-BahenaMH, Tejedor C, Martín I, Velázquez E, Peix A (2013) Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil. Int J Syst Evol Microbiol 63(5):1760–1765Google Scholar
  174. Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2015) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65(1):253–266CrossRefGoogle Scholar
  175. Rashid MHO, Young JPW, Everall I, Clercx P, Willems A, Braun MS, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65(9):3037–3045PubMedCrossRefGoogle Scholar
  176. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trend Microbiol 6(4):139–144CrossRefGoogle Scholar
  177. Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microb Interact 19(2):181–188Google Scholar
  178. Ribeiro RA, Ormeno-Orrillo E, Dall’Agnol RF, Graham PH, Martinez-Romero E, Hungria M (2013) Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164(7):740–748PubMedCrossRefGoogle Scholar
  179. Ribeiro RA, Martins TB, Ormeño-Orrillo E, Delamuta JRM, Rogel MA, Martínez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65(9):3162–3169PubMedCrossRefGoogle Scholar
  180. Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E, Martínez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63(9):3423–3429PubMedCrossRefGoogle Scholar
  181. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velazquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47e53Google Scholar
  182. Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4) 319–339Google Scholar
  183. Román-Ponce B, Zhang YJ, Vásquez-Murrieta MS, Sui XH, Chen WF, Padilla JCA, Wang ET (2016) Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 66(1):398–406PubMedCrossRefGoogle Scholar
  184. Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181(5):337–344PubMedCrossRefGoogle Scholar
  185. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microb Interact 19(8):827–837CrossRefGoogle Scholar
  186. Rudrappa TK, Paré Czymmek PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ryan PR, Delhaize E, Watt M, Richardson AE (2016) Plant roots: understanding structure and function in an ocean of complexity. Ann Bot 118(4):555–559PubMedCentralCrossRefGoogle Scholar
  188. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA, Andronov EE, Willems A (2015) Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie Van Leeuwenhoek 107(4):911–920PubMedCrossRefGoogle Scholar
  189. Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A, Velázquez E (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64(1):242–247PubMedCrossRefGoogle Scholar
  190. Saikia S, Barman U (2013) Increasing rate of adoption of rice technologies in Assam: a need of the hour for food securityGoogle Scholar
  191. Sánchez-Contreras M, Martinez-Granero E, Redondo-Nieto M, Rivilla R, Martín M (2013). Biocontrol of fungal root pathogens by fluorescent Pseudomonas. Beneficial plant-microbial Interactions. Ecol Applicat 270Google Scholar
  192. Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR (2013) Siderophore producing PGPR for crop nutrition and phytopathogen suppression. Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 449–471CrossRefGoogle Scholar
  193. Schmelz E, Engelberth J (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Nat Acad Sci USA 100:10552–10557PubMedPubMedCentralCrossRefGoogle Scholar
  194. Schwartz AR, Ortiz I, Maymon M, Herbold CW, Fujishige NA, Vijanderan JA, DeMason DA (2013) Bacillus simplex—a little known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. viciae. Agronomy 3(4):595–620Google Scholar
  195. Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V, Sa T (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. Bacteria in agrobiology: crop ecosystems. Springer, Berlin, Heidelberg, pp 449–471Google Scholar
  196. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39(1):23–32PubMedCrossRefGoogle Scholar
  197. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Hurek T (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microb Inter 25(1):28–36CrossRefGoogle Scholar
  198. Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6Google Scholar
  199. Shamseldin A, Carro L, Peix A, Velázquez E, Moawad H, Sadowsky MJ (2016) The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. Syst Appl Microbiol 39(4):275–279PubMedCrossRefGoogle Scholar
  200. Sharma VK, Nowak J (1998) Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44(6):528–536CrossRefGoogle Scholar
  201. Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microb Interect 21(6):799–807CrossRefGoogle Scholar
  202. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, James EK, Chen WM (2012) Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 62(9):2272–2278PubMedCrossRefGoogle Scholar
  203. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, dos Reis Junior FB, Young JPW (2013) Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 63(2):435–441PubMedCrossRefGoogle Scholar
  204. Sheu SY, Chen MH, Liu WY, Andrews M, James EK, Ardley JK, Chen WM (2015) Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 65(12):4716–4723PubMedCrossRefGoogle Scholar
  205. Silva HS, Tozzi JP, Terrasan CR, Bettiol W (2012) Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biol Cont 63(1):62–67CrossRefGoogle Scholar
  206. Silva FV, De Meyer SE, Simões-Araújo JL, da Costa Barbé T, Xavier GR, O’Hara G, Zilli JE (2014) Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rain forest soils. Int J Syst Evol Microbiol 64(7):2358–2363PubMedCrossRefGoogle Scholar
  207. Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2015) An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent. Appl Biochem Biotechnol 175(4):2020–2034PubMedCrossRefGoogle Scholar
  208. Soares MA, Li HY, Bergen M, da Silva JM, Kowalski KP, White JF (2016) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.). Plant Soil doi: 10.1007/s11104-015-2638-7
  209. Soto MJ, Sanjuan J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152(11):3167–3174PubMedCrossRefGoogle Scholar
  210. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  211. Stajković O, De Meyer S, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica 33(1):107–114Google Scholar
  212. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15(2):183–190CrossRefGoogle Scholar
  213. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soil 25(1):13–19CrossRefGoogle Scholar
  214. Sturz AV, Christie BR, Matheson BG (1998) Association of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167CrossRefGoogle Scholar
  215. Sun G, Fang Y, Han DF, Lv M (2008) The Bioturbation effects of Limnodrilus hoffmeisteri on the vertical distribution of sediment particles in paddy field. J Changchun Normal University 8:017Google Scholar
  216. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214e220Google Scholar
  217. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53(11):1195–1202PubMedCrossRefGoogle Scholar
  218. Tani A, Muthuri CW, Ngamau CN, Matiru VN (2015) Potential use of endophytic bacteria as biofertilizer for sustainable banana (Musa Spp.) Prod Afr J Hort Sci 8(1):1–11Google Scholar
  219. Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329(1–2):421–431CrossRefGoogle Scholar
  220. Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trend Plant Sci 19(1):44–51CrossRefGoogle Scholar
  221. Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SPS (2010) Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60(3):167–171PubMedCrossRefGoogle Scholar
  222. Tiwari R, Awasthi A, Mall M, Shukla AK, Srinivas KS, Syamasundar KV, Kalra A (2013) Bacterial endophyte-mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Ind Crop Product 43:306–310CrossRefGoogle Scholar
  223. Toharisman A, Suhartono MT, Spindler-Barth M, Hwang JK, Pyun YR (2005) Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World J Microbiol Biotechnol 21(5):733–738CrossRefGoogle Scholar
  224. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Martinez-Molina E, Velazquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318e1327Google Scholar
  225. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. The ISME J 4(10):1265–1281PubMedCrossRefGoogle Scholar
  226. Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162(1):69–76PubMedCrossRefGoogle Scholar
  227. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8(8):857–874CrossRefGoogle Scholar
  228. Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979e1983Google Scholar
  229. Van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fert Soil 10(2):127–133CrossRefGoogle Scholar
  230. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1989) Bacterial adhesion: a physicochemical approach. Microb Ecol 17(1):1–15PubMedCrossRefGoogle Scholar
  231. Van Wees SC, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CM (1999) Rhizobacteria mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41(4):537–549PubMedCrossRefGoogle Scholar
  232. Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol lett 26(5):425–429Google Scholar
  233. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soil 40(1):36–43Google Scholar
  234. Wakelin SA, Gupta VVSR, Forrester ST (2010) Regional and local factors affecting diversity, abundance and activity of free-living, N2-fixing bacteria in Australian agricultural soils. Pedobiologia 53(6):391–399CrossRefGoogle Scholar
  235. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51PubMedPubMedCentralCrossRefGoogle Scholar
  236. Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19(10):1250–1258PubMedCrossRefGoogle Scholar
  237. Wang ET, Chen WF, Sui XH, Zhang XX, Liu HC, Chen WX (2011a) Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61(8):1912–1920PubMedCrossRefGoogle Scholar
  238. Wang F, Wang ET, Wu LJ, Sui XH, Li JrY, Chen WX (2011b) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61(11):2582–2588Google Scholar
  239. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Chen WX (2013a) Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 63(2):616–624PubMedCrossRefGoogle Scholar
  240. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Chen WX (2013b) Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 36(2):101–105PubMedCrossRefGoogle Scholar
  241. Wang YC, Wang F, Hou BC, Wang ET, Chen WF, Sui XH, Zhang YB (2013c) Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol 36(7):467–473PubMedCrossRefGoogle Scholar
  242. Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188:1–8PubMedCrossRefGoogle Scholar
  243. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965PubMedCrossRefGoogle Scholar
  244. Watson R, Albon S, Aspinall R, Austen M, Bardgett B, Bateman I, Bullock J (2011) UK National ecosystem assessment: understanding nature’s value to society. Synthesis of key findings. http://eprints.lancs.ac.uk/id/eprint/49673
  245. Wei XL, Han MS, Xia CC, Ding SL, Xu L, Lin YB, Wei GH (2015) Diaphorobacter ruginosibacter sp. nov., isolated from soybean root nodule, and emended description of the genus Diaphorobacter. Arch Microbiol 197(5):683–692PubMedCrossRefGoogle Scholar
  246. Welbaum GE, Meinzer FC (1990) Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiol 93(3):1147–1153PubMedPubMedCentralCrossRefGoogle Scholar
  247. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254PubMedCrossRefGoogle Scholar
  248. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(suppl 1):487–511PubMedCrossRefGoogle Scholar
  249. Will ME, Sylvia DM (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56(7):2073–2079PubMedPubMedCentralGoogle Scholar
  250. Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathol 83(1):117–123CrossRefGoogle Scholar
  251. Wilson M, Hirano SS, Lindow SE (1999) Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol 65:1435–1443PubMedPubMedCentralGoogle Scholar
  252. Woodward AW, Bartel B (2005) A receptor for auxin. Plant Cell 17(9):2425–2429PubMedPubMedCentralCrossRefGoogle Scholar
  253. Xie GH, Cai MY, Tao GC, Steinberger Y (2003) Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biol Fert Soil 37(1):29–38Google Scholar
  254. Xu L, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie Van Leeuwenhoek 99(4):845–854PubMedCrossRefGoogle Scholar
  255. Xu L, Zhang Y, Deng ZS, Zhao L, Wei X L, Wei GH (2013) Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie Van Leeuwenhoek 103(3):559–565Google Scholar
  256. Yang B, Ma HY, Wang XM, Jia Y, Hu J, Li X, Dai CC (2014) Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.):by the endophyte Phomopsis liquidambari. Plant Physiol Biochem 82:172–182PubMedCrossRefGoogle Scholar
  257. Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, Vega-Hernandez M (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional. Plant Biol 28(9):845–870Google Scholar
  258. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375e393Google Scholar
  259. Zhang RJ, Hou BC, Wang ET, Li JrY, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61(3):512–517Google Scholar
  260. Zhang YM, Li JrY, Chen WF, Wang ET, Sui XH, Li QQ, Chen WX (2012) Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.):nodules. Int J Syst Evol Microbiol 62(8):1951–1957Google Scholar
  261. Zhang YJ, Zheng WT, Everall I, Young JPW, Zhang XX, Tian CF, Chen WX (2015) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65(9):2960–2967PubMedCrossRefGoogle Scholar
  262. Zheng WT, Li JrY, Wang R, Sui XH, Zhang XX, Zhang JJ, Chen WX (2013) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63(6):2002–2007Google Scholar
  263. Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60(11):2552–255PubMedCrossRefGoogle Scholar
  264. Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63(8):2794–2799PubMedCrossRefGoogle Scholar
  265. Zilli JE, Baraúna AC, da Silva K, De Meyer SE, Farias EN, Kaminski PE, Dourado FDS (2014) Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 64(12):3950–3957Google Scholar
  266. Zimmermann MH (1983) Pathology of the xylem. In: Xylem structure and the ascent of sap. Springer, Berlin, Heidelberg, pp 107–125Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shrivardhan Dheeman
    • 1
  • Dinesh K. Maheshwari
    • 1
    Email author
  • Nitin Baliyan
    • 1
  1. 1.Department of Botany and MicrobiologyGurukul Kangri UniversityHaridwarIndia

Personalised recommendations