Endophytic Actinobacteria: Beneficial Partners for Sustainable Agriculture

  • Ricardo Araujo
  • Onuma Kaewkla
  • Christopher M.M. FrancoEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)


Endophytic actinobacteria have been proven to be effective partners that have beneficial functions with a number of crop plants. A large number of studies have been carried out, showing these positive effects in laboratories and glasshouses, but with fewer reports of their effectiveness in the field. This chapter highlights the results of field trials of actinobacterial endophytes conducted with cereals, vegetables such as tomato, cucumber, or cabbage, legumes such as chickpea or pea, fruits such as melon or grapes, peanuts, and woody plants.


Actinobacteria Endophyte Biocontrol Crop plants 


  1. Adhikari TB, Gurung S, Hansen JM, Bonman JM (2012) Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota. Phytopathology 102(4):390–402CrossRefPubMedGoogle Scholar
  2. Akarapisan A, Bhromsiri A, Sangmanee P (2008) Selection of suitable isolates of endophytic actinomycetes and rhizobia for improvement of N2 fixation and disease control of various Pisum sativum on the highland area. Asian J Food Agro-Ind 5:799–806Google Scholar
  3. Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the european situation. Eur J Plant Pathol 114(3):329–341CrossRefGoogle Scholar
  4. Araujo R (2010) Endemism versus dispersion: contribution of microbial genetics for forensic evidences. Open Foren Sci J 3:14–21CrossRefGoogle Scholar
  5. Araujo R, Amorim A, Gusmão L (2009) Microbial forensics: Do Aspergillus fumigatus strains present local or regional differentiation? Foren Sci Int: Genet Suppl Ser 2(1):297–299Google Scholar
  6. Atidrivon D (1995) Biology, ecology, and epidemiology of the potato late blight pathogen Phytophthora infestans in soil. Phytopathology 85:1053–1056Google Scholar
  7. Bai Y, D'Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238CrossRefPubMedGoogle Scholar
  8. Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Vale G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13CrossRefPubMedGoogle Scholar
  9. Beauséjour J, Clermont N, Beaulieu C (2003) Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant Soil 256(2):463–468CrossRefGoogle Scholar
  10. Berdy J (2005) Bioactive microbial metabolites. J Antibiotics (Tokyo) 58(1):1–26CrossRefGoogle Scholar
  11. Bergougnoux V (2014) The history of tomato: From domestication to biopharming. Biotechnol Adv 32(1):170–189CrossRefPubMedGoogle Scholar
  12. Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chilli pepper. Biocontrol 56(3):365–374CrossRefGoogle Scholar
  13. Bubici G, Marsico AD, D’Amico M, Amenduni M, Cirulli M (2013) Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl Soil Ecol 72:128–134CrossRefGoogle Scholar
  14. Bulgarelli D, Rott M, Schlaeppi K, Loren Ver, van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95CrossRefPubMedGoogle Scholar
  15. Charmet G (2011) Wheat domestication: lessons for the future. C R Biol 334(3):212–220CrossRefPubMedGoogle Scholar
  16. Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93(5):1817–1830CrossRefPubMedGoogle Scholar
  17. Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol 15(5):433–446CrossRefGoogle Scholar
  18. Chen X, Pizzatti C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P (2016) Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic Streptomycetes. Front Microbiol 7:714PubMedPubMedCentralGoogle Scholar
  19. Chung WC, Huang JW, Huang HC (2005) Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32(2):287–294CrossRefGoogle Scholar
  20. Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70(11):6407–6413CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69(9):5603–5608CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cuppels DA, Higham J, Traquair JA (2013) Efficacy of selected streptomycetes and a streptomycete + pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biol Control 67(3):361–372CrossRefGoogle Scholar
  23. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986CrossRefPubMedGoogle Scholar
  24. Dias JS, Ferreira ME, Williams PH (1993) Screening of Portuguese cole landraces (Brassica oleracea L.) with Peronospora parasitica and Plasmodiophora brassicae. Euphytica 67(1):135–141CrossRefGoogle Scholar
  25. Donald K, Andy H, Sina A, Margaret S, Kristin F (2009) Organic seed treatments tested in barley production.
  26. Duczek LJ, Verma PR, Spurr DT (1985) Effect of inoculum density of Cochliobolus sativus on common root rot of wheat and barley. Can J Plant Pathol 7(4):382–386CrossRefGoogle Scholar
  27. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920CrossRefPubMedPubMedCentralGoogle Scholar
  28. El-Tarabily KA, Nassar AH, Hardy GE, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106(1):13–26CrossRefPubMedGoogle Scholar
  29. El-Tarabily KA, Hardy GE, Giles E, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128(4):527–539CrossRefGoogle Scholar
  30. Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36(6):524–531CrossRefGoogle Scholar
  31. Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51(4):681–692CrossRefPubMedGoogle Scholar
  32. Gangwar M, Rani S, Sharma N (2012) Investigating endophytic actinomycetes diversity from rice for plant growth promoting and antifungal activity. J Adv Life Sci 1:10–21Google Scholar
  33. Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18(12):1307–1310CrossRefPubMedGoogle Scholar
  34. Gay PA, Tuzun S (2000) Temporal and spatial assessment of defense responses in resistant and susceptible cabbage varieties during infection with Xanthomonas campestris pv. campestris. Physiol Mol Plant Pathol 57(5):201–210CrossRefGoogle Scholar
  35. Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Protec 30(8):1070–1078CrossRefGoogle Scholar
  36. Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B (2015a) Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L). Biotech 5(5):799–806Google Scholar
  37. Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK (2015b) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agric 5(2):123–133Google Scholar
  38. Guo YL, Ge S (2005) Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. Am J Bot 92(9):1548–1558CrossRefPubMedGoogle Scholar
  39. Hardwick NV, Jones DR, Slough JE (2001) Factors affecting diseases of winter wheat in England and Wales, 1989–98. Plant Pathol 50(5):650–652CrossRefGoogle Scholar
  40. Hata EM, Sijam K, Ahmad ZAM, Yusof MT, Azman NA (2015) In vitro antimicrobial assay of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. Brazilian Arch Biol Technol 58:821–832CrossRefGoogle Scholar
  41. Intra B, Mungsuntisuk I, Nihira T, Igarashi Y, Panbangred W (2011) Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Res Notes 4:98CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98CrossRefPubMedGoogle Scholar
  43. Kaewkla O, Franco CM (2013) Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 65(2):384–393CrossRefPubMedGoogle Scholar
  44. Kampapongsa D, Kaewkla O (2016) Biodiversity of endophytic actinobacteria from jasmine rice (Oryza sativa L. KDML 105) grown in Roi-Et Province, Thailand and their antimicrobial activity against rice pathogens. Ann Microbiol 66(2):587–595CrossRefGoogle Scholar
  45. Lahdenperae ML, Simon E, Uoti J (1991) Mycostop - a novel biofungicide based on Streptomyces bacteria. Biotic interactions and soil-borne diseases: proceedings of the first conference on the European Foundation for Plant Pathology, pp 258–263Google Scholar
  46. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2013) Retraction. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 342(6155):191CrossRefPubMedGoogle Scholar
  47. Lievens B, Brouwer M, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2006) Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci 171(1):155–165CrossRefGoogle Scholar
  48. Liu B, Huang L, Kang Z, Buchenauer H (2011) Evaluation of endophytic bacterial strains as antagonists of take-all in wheat caused by Gaeumannomyces graminis var. tritici in greenhouse and field. J Pest Sci 84(3):257–264CrossRefGoogle Scholar
  49. Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Ann Rev Phytopathol 52:213–241CrossRefGoogle Scholar
  50. Martinez-Hidalgo P, Galindo-Villardon P, Trujillo ME, Igual JM, Martinez-Molina E (2014) Micromonospora from nitrogen-fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria. Sci Rep 4(6389)Google Scholar
  51. McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348CrossRefGoogle Scholar
  52. Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol Biochem 32(11–12):1637–1642CrossRefGoogle Scholar
  53. Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296CrossRefPubMedGoogle Scholar
  54. Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88(7):736–740CrossRefGoogle Scholar
  55. Orakçı GE, Yamaç M, Amoroso MJ, Cuozzo SA (2010) Selection of antagonistic actinomycete isolates as biocontrol agents against root-rot fungi. Fresenius Environ Bull 19(3):417–424Google Scholar
  56. Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119(1–2):103–108CrossRefPubMedGoogle Scholar
  57. Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Protec 38:80–86CrossRefGoogle Scholar
  58. Pane C, Piccolo A, Spaccini R, Celano G, Villecco D, Zaccardelli M (2013) Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl Soil Ecol 65:43–51CrossRefGoogle Scholar
  59. Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100(5):999–1008CrossRefPubMedPubMedCentralGoogle Scholar
  60. Prévost K, Couture G, Shipley B, Brzezinski R, Beaulieu C (2006) Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. Biocontrol 51:533–546CrossRefGoogle Scholar
  61. Priya CS, Kalaichelvan PT (2011) Strategies for antagonistic activity of local actinomycete isolates against rice fungal pathogens. Asian J Exo Biol Sci 2:648–653Google Scholar
  62. Quintana-Jones TA (2011) Evaluation of drip applications and foliar sprays of the biocontrol product Actinovate on powdery mildew and other fungal diseases of tomato. Faculty of California Polytechnic State University, San Luis ObispoCrossRefGoogle Scholar
  63. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303CrossRefGoogle Scholar
  64. Raza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q (2016) Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol 1–11Google Scholar
  65. Sangmanee P, Bhromsiri A, Akarapisan A (2009) The potential of endophytic actinomycetes, (Streptomyces sp.) for the biocontrol of powdery mildew disease in sweet pea (Pisum sativum). Asian J Food Agro-Ind (Special Issue):93–98Google Scholar
  66. Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94(1):11–19CrossRefPubMedGoogle Scholar
  67. Shepardson S, Esau K, McCrum R (1980) Ultrastructure of potato leaf phloem infected with potato leafroll virus. Virology 105(2):379–392CrossRefPubMedGoogle Scholar
  68. Shi G, Liang Y, Yao X, Zeng R, Mu L (2013) Effects of actinomycetes on yields and qualities of tomato and pepper under different for crops. Bull Soil Water Cons 1:055Google Scholar
  69. Shilling D, Lowell C Tomato University trials, University of Florida, US, accessed, from
  70. Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG (2014) A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological barley stripe mosaic virus. Sci Rep 4:4003Google Scholar
  71. Soe KM, Yamakawa T (2013) Low-density co-inoculation of Myanmar Bradyrhizobium yuanmingense MAS34 and Streptomyces griseoflavus P4 to enhance symbiosis and seed yield in soybean varieties. Am J Plant Sci 4:1879–1892CrossRefGoogle Scholar
  72. Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr Soil Science and Plant Nutrition 58:319–325CrossRefGoogle Scholar
  73. Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protec 24(7):601–613CrossRefGoogle Scholar
  74. Sreevidya M, Gopalakrishnan S, Melø TM, Simic N, Bruheim P, Sharma M, Srinivas V, Alekhya G (2015) Biological control of Botrytis cinerea and plant growth promotion potential by Penicillium citrinum in chickpea (Cicer arietinum L.). Biocontr. Sci Technol 25(7):739–755Google Scholar
  75. Suprapta DN (2012) Potential of microbial antagonists as biocontrol agents against plant pathogens. J ISSAAS 18(2):1–8Google Scholar
  76. Thapanapongworakul P (2003) Characterization of endophytic actinomycetes capable of controlling sweet pea root rot diseases and effects on root nodule bacteria. Master’’ dissertation. Chiang Mai University, ThailandGoogle Scholar
  77. Thomas SH, Murray LW, Cardenas M (1995) Relationship of pre-plant population densities of Meloidogyne incognita to damage in three chile pepper cultivars. Plant Dis 79:557–559CrossRefGoogle Scholar
  78. Tian XL, Cao LX, Tan HM, Zeng QG, Jia YY, Han WQ, Zhou SN (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20(3):303–309CrossRefGoogle Scholar
  79. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  80. Turkington TK, Orr DD, Clear RM, Patrick SK, Burnett PA, Xi K (2002) Fungal plant pathogens infecting barley and wheat seed from Alberta, 1995-1997. Can J Plant Pathol 24(3):302–308CrossRefGoogle Scholar
  81. Valkonen JPT, Koponen H (1990) The seed-borne fungi of Chinese cabbage (Brassica pekinensis), their pathogenicity and control. Plant Pathol 39(3):510–516CrossRefGoogle Scholar
  82. Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Env Microbiol 62(5):1630–1635Google Scholar
  83. Van Hop D, Phuong Hoa PT, Quang ND, Ton PH, Ha TH, Van Thi N, Van Hai T, Kim Quy NT, Anh Dao NT, Thom VT (2014) Biocontrol Sci 19:103–111CrossRefPubMedGoogle Scholar
  84. Xu XM, Jeger MJ (2013) Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103(2):108–116CrossRefPubMedGoogle Scholar
  85. Yang C, Hamel C, Gan Y, Vujanovic V (2012) Bacterial endophytes mediate positive feedback effects of early legume termination times on the yield of subsequent durum wheat crops. Can J Microbiol 58(12):1368–1377CrossRefPubMedGoogle Scholar
  86. Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61(8):3119–3128PubMedPubMedCentralGoogle Scholar
  87. Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57(1):1–14Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ricardo Araujo
    • 1
    • 3
  • Onuma Kaewkla
    • 2
    • 3
  • Christopher M.M. Franco
    • 3
    Email author
  1. 1.Instituto de Investigacao E Inovacaoem SaudeUniversidade do PortoPortoPortugal
  2. 2.Department of BiologyMahasarakham UniversityMahasarakhamThailand
  3. 3.Medical BiotechnologyFlinders UniversityAdelaideAustralia

Personalised recommendations