Skip to main content

Endophytic Actinobacteria: Beneficial Partners for Sustainable Agriculture

  • Chapter
  • First Online:
Endophytes: Biology and Biotechnology

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 15))

Abstract

Endophytic actinobacteria have been proven to be effective partners that have beneficial functions with a number of crop plants. A large number of studies have been carried out, showing these positive effects in laboratories and glasshouses, but with fewer reports of their effectiveness in the field. This chapter highlights the results of field trials of actinobacterial endophytes conducted with cereals, vegetables such as tomato, cucumber, or cabbage, legumes such as chickpea or pea, fruits such as melon or grapes, peanuts, and woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari TB, Gurung S, Hansen JM, Bonman JM (2012) Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota. Phytopathology 102(4):390–402

    Article  PubMed  Google Scholar 

  • Akarapisan A, Bhromsiri A, Sangmanee P (2008) Selection of suitable isolates of endophytic actinomycetes and rhizobia for improvement of N2 fixation and disease control of various Pisum sativum on the highland area. Asian J Food Agro-Ind 5:799–806

    Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the european situation. Eur J Plant Pathol 114(3):329–341

    Article  Google Scholar 

  • Araujo R (2010) Endemism versus dispersion: contribution of microbial genetics for forensic evidences. Open Foren Sci J 3:14–21

    Article  CAS  Google Scholar 

  • Araujo R, Amorim A, Gusmão L (2009) Microbial forensics: Do Aspergillus fumigatus strains present local or regional differentiation? Foren Sci Int: Genet Suppl Ser 2(1):297–299

    Google Scholar 

  • Atidrivon D (1995) Biology, ecology, and epidemiology of the potato late blight pathogen Phytophthora infestans in soil. Phytopathology 85:1053–1056

    Google Scholar 

  • Bai Y, D'Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238

    Article  CAS  PubMed  Google Scholar 

  • Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Vale G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13

    Article  CAS  PubMed  Google Scholar 

  • Beauséjour J, Clermont N, Beaulieu C (2003) Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant Soil 256(2):463–468

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiotics (Tokyo) 58(1):1–26

    Article  CAS  Google Scholar 

  • Bergougnoux V (2014) The history of tomato: From domestication to biopharming. Biotechnol Adv 32(1):170–189

    Article  CAS  PubMed  Google Scholar 

  • Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chilli pepper. Biocontrol 56(3):365–374

    Article  Google Scholar 

  • Bubici G, Marsico AD, D’Amico M, Amenduni M, Cirulli M (2013) Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl Soil Ecol 72:128–134

    Article  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Loren Ver, van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  PubMed  Google Scholar 

  • Charmet G (2011) Wheat domestication: lessons for the future. C R Biol 334(3):212–220

    Article  PubMed  Google Scholar 

  • Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93(5):1817–1830

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol 15(5):433–446

    Article  Google Scholar 

  • Chen X, Pizzatti C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P (2016) Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic Streptomycetes. Front Microbiol 7:714

    PubMed  PubMed Central  Google Scholar 

  • Chung WC, Huang JW, Huang HC (2005) Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32(2):287–294

    Article  Google Scholar 

  • Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70(11):6407–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69(9):5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppels DA, Higham J, Traquair JA (2013) Efficacy of selected streptomycetes and a streptomycete + pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biol Control 67(3):361–372

    Article  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    Article  CAS  PubMed  Google Scholar 

  • Dias JS, Ferreira ME, Williams PH (1993) Screening of Portuguese cole landraces (Brassica oleracea L.) with Peronospora parasitica and Plasmodiophora brassicae. Euphytica 67(1):135–141

    Article  Google Scholar 

  • Donald K, Andy H, Sina A, Margaret S, Kristin F (2009) Organic seed treatments tested in barley production. http://www.organicagcentre.ca/Docs/TechnicalBulletins09/E2009-33OrganicBarley.pdf

  • Duczek LJ, Verma PR, Spurr DT (1985) Effect of inoculum density of Cochliobolus sativus on common root rot of wheat and barley. Can J Plant Pathol 7(4):382–386

    Article  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GE, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106(1):13–26

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA, Hardy GE, Giles E, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128(4):527–539

    Article  CAS  Google Scholar 

  • FAOSTAT (2014) http://faostat.fao.org/site/567/DesktopDefault.aspx - ancor, accessed, from http://faostat.fao.org/site/567/DesktopDefault.aspx - ancor

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36(6):524–531

    Article  Google Scholar 

  • Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51(4):681–692

    Article  CAS  PubMed  Google Scholar 

  • Gangwar M, Rani S, Sharma N (2012) Investigating endophytic actinomycetes diversity from rice for plant growth promoting and antifungal activity. J Adv Life Sci 1:10–21

    Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18(12):1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gay PA, Tuzun S (2000) Temporal and spatial assessment of defense responses in resistant and susceptible cabbage varieties during infection with Xanthomonas campestris pv. campestris. Physiol Mol Plant Pathol 57(5):201–210

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Protec 30(8):1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B (2015a) Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L). Biotech 5(5):799–806

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK (2015b) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agric 5(2):123–133

    Google Scholar 

  • Guo YL, Ge S (2005) Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. Am J Bot 92(9):1548–1558

    Article  CAS  PubMed  Google Scholar 

  • Hardwick NV, Jones DR, Slough JE (2001) Factors affecting diseases of winter wheat in England and Wales, 1989–98. Plant Pathol 50(5):650–652

    Article  Google Scholar 

  • Hata EM, Sijam K, Ahmad ZAM, Yusof MT, Azman NA (2015) In vitro antimicrobial assay of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. Brazilian Arch Biol Technol 58:821–832

    Article  CAS  Google Scholar 

  • Intra B, Mungsuntisuk I, Nihira T, Igarashi Y, Panbangred W (2011) Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Res Notes 4:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Kaewkla O, Franco CM (2013) Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 65(2):384–393

    Article  PubMed  Google Scholar 

  • Kampapongsa D, Kaewkla O (2016) Biodiversity of endophytic actinobacteria from jasmine rice (Oryza sativa L. KDML 105) grown in Roi-Et Province, Thailand and their antimicrobial activity against rice pathogens. Ann Microbiol 66(2):587–595

    Article  CAS  Google Scholar 

  • Lahdenperae ML, Simon E, Uoti J (1991) Mycostop - a novel biofungicide based on Streptomyces bacteria. Biotic interactions and soil-borne diseases: proceedings of the first conference on the European Foundation for Plant Pathology, pp 258–263

    Google Scholar 

  • Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2013) Retraction. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 342(6155):191

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2006) Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci 171(1):155–165

    Article  CAS  Google Scholar 

  • Liu B, Huang L, Kang Z, Buchenauer H (2011) Evaluation of endophytic bacterial strains as antagonists of take-all in wheat caused by Gaeumannomyces graminis var. tritici in greenhouse and field. J Pest Sci 84(3):257–264

    Article  Google Scholar 

  • Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Ann Rev Phytopathol 52:213–241

    Article  CAS  Google Scholar 

  • Martinez-Hidalgo P, Galindo-Villardon P, Trujillo ME, Igual JM, Martinez-Molina E (2014) Micromonospora from nitrogen-fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria. Sci Rep 4(6389)

    Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348

    Article  Google Scholar 

  • Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol Biochem 32(11–12):1637–1642

    Article  CAS  Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296

    Article  CAS  PubMed  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88(7):736–740

    Article  Google Scholar 

  • Orakçı GE, Yamaç M, Amoroso MJ, Cuozzo SA (2010) Selection of antagonistic actinomycete isolates as biocontrol agents against root-rot fungi. Fresenius Environ Bull 19(3):417–424

    Google Scholar 

  • Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119(1–2):103–108

    Article  PubMed  Google Scholar 

  • Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Protec 38:80–86

    Article  Google Scholar 

  • Pane C, Piccolo A, Spaccini R, Celano G, Villecco D, Zaccardelli M (2013) Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl Soil Ecol 65:43–51

    Article  Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100(5):999–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Prévost K, Couture G, Shipley B, Brzezinski R, Beaulieu C (2006) Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. Biocontrol 51:533–546

    Article  Google Scholar 

  • Priya CS, Kalaichelvan PT (2011) Strategies for antagonistic activity of local actinomycete isolates against rice fungal pathogens. Asian J Exo Biol Sci 2:648–653

    Google Scholar 

  • Quintana-Jones TA (2011) Evaluation of drip applications and foliar sprays of the biocontrol product Actinovate on powdery mildew and other fungal diseases of tomato. Faculty of California Polytechnic State University, San Luis Obispo

    Book  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303

    Article  Google Scholar 

  • Raza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q (2016) Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol 1–11

    Google Scholar 

  • Sangmanee P, Bhromsiri A, Akarapisan A (2009) The potential of endophytic actinomycetes, (Streptomyces sp.) for the biocontrol of powdery mildew disease in sweet pea (Pisum sativum). Asian J Food Agro-Ind (Special Issue):93–98

    Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94(1):11–19

    Article  PubMed  Google Scholar 

  • Shepardson S, Esau K, McCrum R (1980) Ultrastructure of potato leaf phloem infected with potato leafroll virus. Virology 105(2):379–392

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Liang Y, Yao X, Zeng R, Mu L (2013) Effects of actinomycetes on yields and qualities of tomato and pepper under different for crops. Bull Soil Water Cons 1:055

    Google Scholar 

  • Shilling D, Lowell C Tomato University trials, University of Florida, US, accessed, from https://sepixa.com/wp-content/pdf/tomato.pdf

  • Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG (2014) A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological barley stripe mosaic virus. Sci Rep 4:4003

    Google Scholar 

  • Soe KM, Yamakawa T (2013) Low-density co-inoculation of Myanmar Bradyrhizobium yuanmingense MAS34 and Streptomyces griseoflavus P4 to enhance symbiosis and seed yield in soybean varieties. Am J Plant Sci 4:1879–1892

    Article  Google Scholar 

  • Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr Soil Science and Plant Nutrition 58:319–325

    Article  Google Scholar 

  • Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protec 24(7):601–613

    Article  Google Scholar 

  • Sreevidya M, Gopalakrishnan S, Melø TM, Simic N, Bruheim P, Sharma M, Srinivas V, Alekhya G (2015) Biological control of Botrytis cinerea and plant growth promotion potential by Penicillium citrinum in chickpea (Cicer arietinum L.). Biocontr. Sci Technol 25(7):739–755

    Google Scholar 

  • Suprapta DN (2012) Potential of microbial antagonists as biocontrol agents against plant pathogens. J ISSAAS 18(2):1–8

    Google Scholar 

  • Thapanapongworakul P (2003) Characterization of endophytic actinomycetes capable of controlling sweet pea root rot diseases and effects on root nodule bacteria. Master’’ dissertation. Chiang Mai University, Thailand

    Google Scholar 

  • Thomas SH, Murray LW, Cardenas M (1995) Relationship of pre-plant population densities of Meloidogyne incognita to damage in three chile pepper cultivars. Plant Dis 79:557–559

    Article  Google Scholar 

  • Tian XL, Cao LX, Tan HM, Zeng QG, Jia YY, Han WQ, Zhou SN (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20(3):303–309

    Article  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkington TK, Orr DD, Clear RM, Patrick SK, Burnett PA, Xi K (2002) Fungal plant pathogens infecting barley and wheat seed from Alberta, 1995-1997. Can J Plant Pathol 24(3):302–308

    Article  Google Scholar 

  • Valkonen JPT, Koponen H (1990) The seed-borne fungi of Chinese cabbage (Brassica pekinensis), their pathogenicity and control. Plant Pathol 39(3):510–516

    Article  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Env Microbiol 62(5):1630–1635

    Google Scholar 

  • Van Hop D, Phuong Hoa PT, Quang ND, Ton PH, Ha TH, Van Thi N, Van Hai T, Kim Quy NT, Anh Dao NT, Thom VT (2014) Biocontrol Sci 19:103–111

    Article  PubMed  Google Scholar 

  • Xu XM, Jeger MJ (2013) Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103(2):108–116

    Article  PubMed  Google Scholar 

  • Yang C, Hamel C, Gan Y, Vujanovic V (2012) Bacterial endophytes mediate positive feedback effects of early legume termination times on the yield of subsequent durum wheat crops. Can J Microbiol 58(12):1368–1377

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61(8):3119–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57(1):1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M.M. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araujo, R., Kaewkla, O., Franco, C.M. (2017). Endophytic Actinobacteria: Beneficial Partners for Sustainable Agriculture. In: Maheshwari, D. (eds) Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_8

Download citation

Publish with us

Policies and ethics