Advertisement

Endophytism in Cupressoideae (Coniferae): A Model in Endophyte Biology and Biotechnology

  • Jalal SoltaniEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)

Abstract

Plants live in a close association with microorganisms in below ground soil and above ground air. Versatile endophytic communities of microorganisms often shape symbiotic relationships with host plants, enter the foliar and root tissues, and promote host’s health. Evidence suggests that Cupressoideae subfamily of Cupressaceae (Coniferae) harbors beneficial distinct fungal and bacterial endophytic communities. Besides, the fungal endophytic community in Cupressoideae harbors endohyphal bacteria which indirectly enhance the host plant’s health through interaction with their endophytic fungal hosts. Moreover, data from different experiments suggest that the endophytic communities of Cupressoideae could find applications in agroforestry for plant protection against biotic and abiotic stresses. The endophytic microorganisms isolated from the cupressaceous plants are also being regarded as a novel source of biomolecules with immediate significance in medicine and agroforestry. Thus, Cupressoideae, as an underexplored niche, exhibits great promises for endophyte biology and chemistry, as well as evolutionary studies, with potential uses in pharmaceutical, agricultural and biotechnological industries.

Keywords

Cupressoideae, Cupressaceae Endophyte Endohyphal bacteria Endofungal Podophyllotoxin Taxol Pezizomycotina 

Notes

Acknowledgements

The author gratefully acknowledges Bu-Ali Sina University of Hamedan (BASU), Iran, for its supporting research grants. This work is dedicated to Mohammad-Reza Soltani.

References

  1. Agrios GN (2005) Plant Pathology, 5th edn. Elsevier Academic Press, Burlington, MA, p 922Google Scholar
  2. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  3. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845CrossRefPubMedGoogle Scholar
  4. Amaral LS, Rodrigues-Filho E (2010) Two novel Eremophilanes Sesquiterpenes from an endophytic fungus isolated from leaves of Cupressus lusitanica. J Braz Chem Soc 21:1446–1450CrossRefGoogle Scholar
  5. Aminov RI (2013) Role of archaea in human disease. Front Cell Infect Microbiol 3:42CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anand R, Chanway C (2013) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fert Soils 49:235–239CrossRefGoogle Scholar
  7. Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE (2016) Isolation of endohyphal bacteria from foliar Ascomycota and in vitro establishment of their symbiotic associations. Appl Environ Microbiol 82:2943–2949CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnold AE (2007) Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  9. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD et al (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297CrossRefPubMedGoogle Scholar
  10. Bal A, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813CrossRefGoogle Scholar
  11. Barbieri E, Potenza L, Rossi I, Sisti D, Giomaro G, Rossetti S et al (2000) Phylogenetic characterization and in situ detection of a Cytophaga-Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii vittad ectomycorrhizal mycelium. Appl Environ Microbiol 66:5035–5042CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C et al (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35CrossRefPubMedGoogle Scholar
  13. Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P et al (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246CrossRefPubMedGoogle Scholar
  14. Bertaux J, Schmid M, Chemidlin Prevost-Boure N, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238 N. Appl Environ Microbiol 69:4243–4248CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795CrossRefPubMedGoogle Scholar
  16. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedPubMedCentralGoogle Scholar
  17. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bills GF, Polishook JD (1992) Recovery of endophytic fungi from. Chamaecyparis thyoides. Sydowia 44:1–12Google Scholar
  19. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: A network of interactions. Ann Rev Microbiol 63:363–383CrossRefGoogle Scholar
  20. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37CrossRefPubMedPubMedCentralGoogle Scholar
  21. Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3032–3043CrossRefGoogle Scholar
  22. Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M et al (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13Google Scholar
  23. Chandrasekar S, Thiyagarajan S, Sridhar R, Ambethkar B (2013) Diversity of endophytic mycobiota colonizing the aerial tissues of Thuja plicata (Donn ex. D. Don.). Int J Curr Microbiol Applied Sci 2:176–183Google Scholar
  24. Chebotar V, Malfanova N, Shcherbakov A, Ahtemova G, Borisov A, Lugtenberg B, Tikhonovich I (2015) Endophytic bacteria in microbial preparations that improve plant development. Appl Biochem Microbiol 51:271–277CrossRefGoogle Scholar
  25. Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics. Pharmacogn Rev 7:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  26. Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071CrossRefPubMedGoogle Scholar
  27. Dai J, Krohn K, Flörke U, Draeger S, Schulz B, Kiss-Szikszai A, et al. (2006) Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur J Org Chem 3498–350610Google Scholar
  28. Ellsworth KT, Clark TN, Gray CA, Johnson JA (2013) Isolation and bioassay screening of medicinal plant endophytes from eastern Canada. Can J Microbiol 59:761–765CrossRefPubMedGoogle Scholar
  29. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124CrossRefPubMedGoogle Scholar
  30. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25–64CrossRefPubMedPubMedCentralGoogle Scholar
  31. Farjon A (2005) Monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, p 648Google Scholar
  32. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot 87:1044–1105CrossRefPubMedGoogle Scholar
  34. Gherbawy YA, Elhariry HM (2014) Endophytic fungi associated with high-altitude Juniperus trees and their antimicrobial activities. Plant Biosyst 11:1–10Google Scholar
  35. Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G, Petiti L, Cruveiller S, Bianciotto V, Piffanelli P, Lanfranco L, Bonfante P (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6:136–145CrossRefPubMedGoogle Scholar
  36. Hao SH, Wei Y, Wang J, Zhou YM (2015) Allelopathy and the active metabolites of the endophytic fungus Alternaria J46 from Platycladus orientalis. Weed Biol Manag 15:95–101CrossRefGoogle Scholar
  37. Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in Cupressaceous trees. Mycol Res 112:331–334CrossRefPubMedGoogle Scholar
  38. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hoffman MT, Gunatilaka M, Wijeratne EMK, Gunatilaka AAL, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 8:e73132CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hosseyni Moghaddam, MS (2013) Study on some biological effects of natural products from endophytes of cypress. MSc thesis, Bu-Ali Sina University of Hamedan, Iran, 180ppGoogle Scholar
  41. Hosseyni Moghaddam MS, Soltani J (2013) An Investigation on the effects of photoperiod, aging and culture media on vegetative growth and sporulation of rice blast pathogen Pyricularia oryzae. Prog Biol Sci 3:135–143Google Scholar
  42. Hosseyni Moghaddam MS, Soltani J (2014a) Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Ann Microbiol 64:753–761CrossRefGoogle Scholar
  43. Hosseyni Moghaddam MS, Soltani J (2014b) Psycrophilic endophytic fungi with bioactivity inhabit Cupressaceae plant family. Symbiosis 63:79–86CrossRefGoogle Scholar
  44. Hosseyni Moghaddam MS, Soltani J, Babalhavaeji F, Hamzei J, Nazeri S, Mirzaei S (2013) Bioactivities of endophytic Penicillia from Cupressaceae. J Crop Prot 2:421–433Google Scholar
  45. Jagel A, Dörken V (2015) Morphology and morphogenesis of the seed cones of the Cupressaceae - part II. Cupressoideae. In: Bulletin of the Cupressus Conservation Project 4:51–78Google Scholar
  46. Kobayashi DY, Crouch JA (2009) Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts. Ann Rev Phytopathol 47:63–82CrossRefGoogle Scholar
  47. Kour A, Shawl AS, Rehman S, Sultan PH, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121CrossRefGoogle Scholar
  48. Kumaran RS, Muthumary J, Hur BK (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 4:438–446CrossRefGoogle Scholar
  49. Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus fresenius an endophytic fungus from Juniperus communis L Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. Appl Microbiol 107:1364–5072CrossRefGoogle Scholar
  50. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798CrossRefPubMedGoogle Scholar
  51. Lackner G, Moebius N, Partida-Martinez L, Hertweck C (2011) Complete genome sequence of Burkholderia rhizoxinica, an endosymbiont of Rhizopus microsporus. J Bacteriol 193:783–784CrossRefPubMedGoogle Scholar
  52. Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lumini E, Bianchiotto V, Jargeat P, Noveno M, Salvioli A et al (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729CrossRefPubMedGoogle Scholar
  54. Lurie-Weinberger MN, Gophna U (2015) Archaea in and on the Human Body: Health Implications and Future Directions. PLoS Pathog 11(6):e1004833CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104:759–768CrossRefPubMedGoogle Scholar
  56. Mao K, Milne RI, Zhang L, Peng Y, Liu J, Thomas P, Mill RR, Renner SS (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Nat Acad USA 109:7793–7798CrossRefGoogle Scholar
  57. Mirabal-Alonso L, Ortega-Delgado E (2007) Phosphate solubilizing bacteria isolated from the inside of Glomus mosseae spores from Cuba. First international meeting on microbial phosphate solubilization. In: Velazquez E, Rodriguez-Barrueco C (eds) Developments in plant and soil sciences, vol 102 [Reprint of Plant Soil 287:1–84]Google Scholar
  58. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138CrossRefPubMedPubMedCentralGoogle Scholar
  59. Oliveira MN, Santos TM, Vale HM, Delvaux JC, Cordero AP, Ferreira AB et al (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59:221–230CrossRefPubMedGoogle Scholar
  60. Page M, Landry N (1996) Bacterial mass production of taxanes with Erwinia. US Patent No. 5561055AGoogle Scholar
  61. Page M, Landry N, Boissinot M, Helie MC, Harvey M, Gagne M (2000) Bacterial mass production of taxanes and paclitaxel. US Patent No. 6030818AGoogle Scholar
  62. Pakvaz S, Soltani J (2016) Endohyphal bacteria from fungal endophytes of the Mediterranean cypress (Cupressus sempervirens) exhibit in vitro bioactivity. Forest Pathol 46:569–581Google Scholar
  63. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888CrossRefPubMedGoogle Scholar
  64. Partida-Martinez LP, de Looss CF, Ishida K, Ishida M, Roth M et al (2007a) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797CrossRefPubMedGoogle Scholar
  65. Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C (2007b) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777CrossRefPubMedGoogle Scholar
  66. Petrini O (1982) Notes on some species of Chloroscypha endophytic in Cupressaceae of Europe and North America. Sydowia 35:206–222Google Scholar
  67. Petrini O, Carroll GC (1981) Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot 59:629–636CrossRefGoogle Scholar
  68. Rodriguez R, White J, Arnold AE, Redman R (2009) Fungal endophytes: diversity and ecological roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  69. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108CrossRefPubMedGoogle Scholar
  70. Roossinck MJ (2014) Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front Microbiol 5:e787Google Scholar
  71. Roossinck MJ (2015) A new look at plant viruses and their potential beneficial ropes in crops. Mol Plant Pathol 16:331–333CrossRefPubMedGoogle Scholar
  72. Ruiz-Lozano MJ, Bonfante P (1999) Identification of a putative P-transporter operon in the genome of a Burkholderia strain lyving inside the arbuscular mycorrhizal fungus Gigaspora margarita. J Bacteriol 181:4106–4109PubMedPubMedCentralGoogle Scholar
  73. Santos-Filho FC, Amaral LS, Rodrigues-Filho E (2011) Composition of essential oils from Cupressus lusitanica and a xylariaceous fungus. Biochem Syst Ecol 39:485–490CrossRefGoogle Scholar
  74. Scherlach K, Partida-Martinez LP, Dahse H-M, Hertweck C (2006) Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J Am Chem Soc 128:11529–11536CrossRefPubMedGoogle Scholar
  75. Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C (2012) Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew Chem Int Ed Engl 51:9615–9618CrossRefPubMedGoogle Scholar
  76. Scherlach K, Graupner K, Hertweck C (2013) Molecular bacterial-fungal interactions with impact on the environment, food and medicine. Ann Rev Microbiol 67:375–397CrossRefGoogle Scholar
  77. Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A et al (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10:2235–2246CrossRefPubMedGoogle Scholar
  78. Sheikh-Ahmadi A (2016) Exploring the genes involved in taxane diterpenoid biosynthesis pathway in cypress endophytic fungi Alternaria and Trichoderma, and drought stress tolerance induced by those fungi in wheat. MSc thesis, Bu-Ali Sina University of Hamedan, Iran 190 ppGoogle Scholar
  79. Soltani J, Hosseyni Moghaddam MS (2014a) Antiproliferative, antifungal and antibacterial activities of endophytic Alternaria species from Cupressaceae. Curr Microbiol 69:349–356CrossRefPubMedGoogle Scholar
  80. Soltani J, Hosseyni Moghaddam MS (2014b) Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Arch Microbiol 196:635–644CrossRefPubMedGoogle Scholar
  81. Soltani J, Hosseyni Moghaddam MS (2015) Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Curr Microbiol 70:580–586CrossRefPubMedGoogle Scholar
  82. Soltani J, Zaheri-Shoja M, Hamzei J, Hosseyni Moghaddam MS, Pakvaz S (2016) Diversity and bioactivity of endophytic bacterial community of Cupressaceae. Forest Pathol 46: 353–361Google Scholar
  83. Stähelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain memorial award lecture. Cancer Res 51:5–15PubMedGoogle Scholar
  84. Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of Conifers. Nat Prod Commun 10:1671–1682PubMedPubMedCentralGoogle Scholar
  85. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sun L, Hse CY, Shupe T, Sun M, Wang X, Zhao K (2015) Isolation and characterization of an endophytic fungal strain with potent antimicrobial and termiticidal activities from Port-Orford-Cedar. J Econ Entomol 108:962–968CrossRefPubMedGoogle Scholar
  87. Tamjid SS A (2015) Exploring the genes involved in taxane diterpenoid biosynthesis pathway in bacterial endophytes of cypress. MSc thesis, Bu-Ali Sina University of Hamedan, Iran, 136 ppGoogle Scholar
  88. Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416CrossRefPubMedGoogle Scholar
  89. Vujanovic V, St-Arnaud M (2003) A new species of Pseudorobillarda, an endophyte from Thuja occidentalis in Canada, and a key to the species. Mycologia 95:955–958CrossRefPubMedGoogle Scholar
  90. Wang YF, Shi QW, Dong M, Kiyota H, Gu YC, Cong B (2011) Natural taxanes: developments since 1828. Chem Rev 111:7652–7709CrossRefPubMedGoogle Scholar
  91. Wei S, Zhang W, Ji Z (2015) Structure and antibacterial activity of ambobactin, a new telomycin-like cyclic depsipeptide antibiotic produced by Streptomyces ambofaciens F3. Molecules 20:16278–16289CrossRefPubMedGoogle Scholar
  92. Wijeratne EM, Xu Y, Arnold AE, Gunatilaka AA (2015) Pulvinulin A, graminin C, and cis-gregatin B–new natural furanones from Pulvinula sp. 11120, a fungal endophyte of Cupressus arizonica. Nat Prod Commun 10:107–11Google Scholar
  93. Zhao K, Liu J, Li Z, Chang Z, Shi P, Ping W, Zhou D (2011) Bacillus subtilis subspecies virginiana, a new subspecies of antitermitic compound-producing endophytic bacteria isolated from Juniperus virginiana. J Econ Entomol 104:1502–1508CrossRefPubMedGoogle Scholar
  94. Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Phytopathology DepartmentBu-Ali Sina UniversityHamedanIran

Personalised recommendations