Genomic Features of Mutualistic Plant Bacteria

  • Pablo R. HardoimEmail author
  • Cristiane Cassiolato Pires Hardoim
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)


Comparative genomics is a powerful technique to identify functional elements accountable for species competence that enables it to thrive in specific environmental niche and for species adaptation to implement particular lifestyles. It also allows insight into genomic island arising from genomic rearrangements. Here, the abundance profile of identified genes, protein families, metabolic pathways, and regulons were computed for endophytes (including nodule-forming plant symbionts), rhizosphere bacteria, and phytopathogens. The lifestyle of endophytes was characterized by significantly overrepresentation of genes encoding for nitrogenase as well as genes involved in the uptake of urea cycle components. The genomes of assigned endophytic bacteria revealed distinct signaling features that differed from those detected among rhizosphere bacteria and phytopathogens. Similar results were also observed for genes encoding proteins involved in transport and secretion systems as well as for transcriptional regulators. Genes involved in chemotaxis receptors are more abundantly represented among phytopathogens than endophytes. Likewise, distinct metabolic functions were enriched for the others plant-associated communities. There was no particular genomic feature that could inhabit common to all genomes in each investigated lifestyle, suggesting that multiple, rather than unique, key features are deployed by the symbionts as strategy to interact with the host plant statically.


Plant-microbe interactions Functional characterization Nitrogen metabolism Redox-regulation Type IV secretion system Transport of polyamines 


  1. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microb Interac 23:593–607CrossRefGoogle Scholar
  2. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D et al (2008) Genome sequence of the ß-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balleza E, Lopez-Bojorquez LN, Martinez-Antonio A, Resendis-Antonio O, Lozada-Chavez I, Balderas-Martinez YI et al (2009) Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 33:133–151CrossRefPubMedGoogle Scholar
  4. Barragán MJL, Blázquez B, Zamarro MT, Mancheño JM, García JL, Díaz E et al (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 280:10683–10694. doi: 10.1074/jbc.M412259200 CrossRefPubMedGoogle Scholar
  5. Blanquart F, Gandon S (2013) Time-shift experiments and patterns of adaptation across time and space. Ecol Lett 16:31–38. doi: 10.1111/ele.12007 CrossRefPubMedGoogle Scholar
  6. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. Plos One 8:e56329. doi:56310.51371/journal.pone.0056329Google Scholar
  7. Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–383CrossRefGoogle Scholar
  8. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125CrossRefGoogle Scholar
  9. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. doi: 10.1016/j.copbio.2013.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cavalier-Smith T (2010) Deep phylogeny, ancestral groups and the four ages of life. Phil Trans Royal Soc B: Biologic Sci 365:111–132. doi: 10.1098/rstb.2009.0161 CrossRefGoogle Scholar
  11. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dye F et al (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77CrossRefPubMedGoogle Scholar
  12. Cheng H-P, Walker GC (1998) Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J Bacteriol 180:20–26PubMedPubMedCentralGoogle Scholar
  13. Combès A, Ndoye I, Bance C, Bruzaud J, Djediat C, Dupont J, et al. (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. Plos One 7:e47313. doi:47310.41371/journal.pone.0047313Google Scholar
  14. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  15. Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant Microb Interac 19:1062–1071CrossRefGoogle Scholar
  16. Döbereiner J, Baldani VLD, Reis VM (2000) The role of biological nitrogen fixation to bioenergy programmes in the tropics. In: Rocha-Miranda E (ed) Transition to global sustainability: the contribution of Brazilian science. Academia Brasileira de Ciências, Rio de Janeiro, Brazil, pp 195–208Google Scholar
  17. Elsen S, Swem LR, Swem DL, Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68:263–279. doi: 10.1128/MMBR.68.2.263-279.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferando L, Mañay JF, Scavino AF (2012) Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties. FEMS Microbiol Ecol 80:696–708CrossRefGoogle Scholar
  19. Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clement C (2012) Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta 236:355–369CrossRefPubMedGoogle Scholar
  20. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi: 10.1111/j.1469-8137.2007.02191.x CrossRefPubMedGoogle Scholar
  21. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Ann Rev Ecol Evol Syst 42:23–46. doi: 10.1146/annurev-ecolsys-102710-145039 CrossRefGoogle Scholar
  22. Garbaye J (1994) Helper bacteria - a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210. doi: 10.1111/j.1469-8137.1994.tb04003.x CrossRefGoogle Scholar
  23. Gerendás J (2007) Significance of polyamines for pectin-methylesterase activity and the ion dynamics in the apoplast. The apoplast of higher plants: compartment of storage, transport and reactions. Springer, The Netherlands, pp 67–83CrossRefGoogle Scholar
  24. Gisin J, Müller A, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B (2010) A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 192:5943–5952CrossRefPubMedPubMedCentralGoogle Scholar
  25. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefPubMedGoogle Scholar
  26. Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. doi: 10.1128/MMBR.00050-14 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Haugo AJ, Watnick PI (2002) Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 45:471–483CrossRefPubMedPubMedCentralGoogle Scholar
  29. Herrero N, Sanchez Marquez S, Zabalgogeazcoa I (2009) Mycoviruses are common among different species of endophytic fungi of grasses. Arch Virol 154:327–330. doi: 10.1007/s00705-008-0293-5 CrossRefPubMedGoogle Scholar
  30. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE 8(9):e73132. doi: 10.1371/journal.pone.0073132 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interac 10:1078–1085CrossRefGoogle Scholar
  33. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  34. Karpinets TV, Park BH, Syed MH, Klotz MG, Uberbacher EC (2014) Metabolic environments and genomic features associated with pathogenic and mutualistic interactions between bacteria and plants. Mol Plant Microb Interac 27:664–677CrossRefGoogle Scholar
  35. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81CrossRefPubMedGoogle Scholar
  36. Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Royal Soc London B: Biologic Sci 274:3119–3126. doi: 10.1098/rspb.2007.1187 CrossRefGoogle Scholar
  37. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474CrossRefGoogle Scholar
  38. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882CrossRefPubMedGoogle Scholar
  39. Koskella B (2013) Phage-mediated selection on microbiota of a long-lived host. Curr Biol 23:1256–1260CrossRefPubMedGoogle Scholar
  40. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381. doi: 10.1007/s00425-008-0772-7 CrossRefPubMedGoogle Scholar
  41. Lackner G, Partida-Martinez LP, Hertweck C (2009) Endofungal bacteria as producers of mycotoxins. Trend Microbiol 17:570–576CrossRefGoogle Scholar
  42. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. doi: 10.1038/nature16467 CrossRefPubMedGoogle Scholar
  43. Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128CrossRefPubMedGoogle Scholar
  44. Lu (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 70:261–272Google Scholar
  45. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490CrossRefGoogle Scholar
  46. Maheshwari DK (2010) Plant growth and health promoting bacteria. Springer, Netherlands, p 448Google Scholar
  47. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y et al (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucl Acid Res 40:D115–D122. doi: 10.1093/nar/gkr1044 CrossRefGoogle Scholar
  48. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515CrossRefPubMedGoogle Scholar
  49. Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120 doi:110.3389/fpls.2013.00120Google Scholar
  50. Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant-microbe partnerships in 2020. Microb Biotechnol. doi: 10.1111/1751-7915.12382 PubMedPubMedCentralGoogle Scholar
  51. Mühling KH, Läuchli A (2001) Influence of chemical form and concentration of nitrogen on apoplastic pH of leaves. J Plant Nut 24:399–411CrossRefGoogle Scholar
  52. Naumann M, Schussler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871CrossRefPubMedGoogle Scholar
  53. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279. doi: 10.1146/annurev.arplant.49.1.249 CrossRefGoogle Scholar
  54. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888CrossRefPubMedGoogle Scholar
  55. Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10:1200–1202CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pawlowski K, Klosse U, Debruijn FJ (1991) Characterization of a novel Azorhizobium caulinodans ORS571 2-component regulatory system, NtrY/NtrX, involved in nitrogen-fixation and metabolism. Mol Gen Genet 231:124–138CrossRefPubMedGoogle Scholar
  57. Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS (2009) Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Nat Acad Sci 106:12477–12482CrossRefPubMedPubMedCentralGoogle Scholar
  58. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:12. doi: 10.1038/nature07895 CrossRefGoogle Scholar
  59. Quambusch M, Pirttilä AM, Tejesvi MV, Winkelmann T, Bartsch M (2014) Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiol 34:524–533CrossRefPubMedGoogle Scholar
  60. Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566CrossRefGoogle Scholar
  61. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443CrossRefPubMedGoogle Scholar
  62. Rodriguez RJ, Henson J, van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416CrossRefPubMedGoogle Scholar
  63. Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968. doi: 10.1007/s10886-013-0310-3 CrossRefPubMedGoogle Scholar
  64. Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806PubMedPubMedCentralGoogle Scholar
  65. Schulz B, Boyle C (2005) The endophytic continuum. Mycoloic Res 109:661–686Google Scholar
  66. Sessitsch A, Hardoim PR, Döring J, Weilharter A, Krause A, Woyke T et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interac 25:28–36CrossRefGoogle Scholar
  67. Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. mBio 4:e00602–00612 doi:00610.01128/mBio.00602-00612Google Scholar
  68. Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the great acceleration. Anthrop Rev 2:81–98. doi: 10.1177/2053019614564785 CrossRefGoogle Scholar
  69. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp 638. Plos Genetics 6:e1000943 doi:1000910.1001371/journal.pgen.1000943Google Scholar
  70. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF et al (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Nat Acad Sci USA 109:8629–8634. doi: 10.1073/pnas.1120436109 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Nat Acad Sci USA 110:20117–20122. doi: 10.1073/pnas.1313452110 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Udvardi M, Poole PS (2013) Transport and metabolism in legume-Rhizobia symbioses. Ann Rev Plant Biol 64:781–805CrossRefGoogle Scholar
  73. Unterseher M, Gazis R, Chaverri P, Guarniz CFG, Tenorio DHZ (2013) Endophytic fungi from peruvian highland and lowland habitats form distinctive and host plant-specific assemblages. Biodivers Conser 22:999–1016CrossRefGoogle Scholar
  74. van Overbeek LS, Franke AC, Nijhuis EHM, Groeneveld RMW, da Rocha UN, Lotz LAP (2011) Bacterial communities associated with Chenopodium album and Stellaria media seeds from arable soils. Microbiol Ecol 62:257–264CrossRefGoogle Scholar
  75. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, et al (2015) Microbial species delineation using whole genome sequences. Nucl Acid Res 657Google Scholar
  76. Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK et al (2013) The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology 103:333–340CrossRefPubMedGoogle Scholar
  77. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microb Interac 25:139–150. doi: 10.1094/MPMI-06-11-0179 CrossRefGoogle Scholar
  78. Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pablo R. Hardoim
    • 1
    Email author
  • Cristiane Cassiolato Pires Hardoim
    • 2
  1. 1.Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de MeisUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratory of Host-Microbe Interactions, Biosciences InstituteSão Paulo State University (UNESP)São Vicente, São PauloBrazil

Personalised recommendations