Advertisement

Quorum-Quenching Endophytes: A Novel Approach for Sustainable Development of Agroecosystem

  • Rajesh P Shastry
  • V Ravishankar RaiEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)

Abstract

Endophytes live within the plant, without causing apparent symptoms of infections. Plants and endophytes interactions are well known for symbiotic relationships, which substantially increases resistance against the plant pathogens as well as play a major role in growth promotion and nutrient uptake. Beneficial endophytes and plant pathogens use cell-to-cell communication to coordinate cell density known as quorum sensing (QS). Quorum sensing regulates most of the phenotypes which are beneficial in endophytes as well as expression of virulence in pathogens. In this chapter, endophytes and plants interactions were correlated interns of quorum sensing, and control strategies by quorum quenching were discussed based on QS-regulated phenotypes. Furthermore, the chapter also focuses on possible biotechnological application of quorum-quenching enzymes from endophytes to control QS-regulated virulence expression in plant pathogens.

Keywords

Endophytes Quorum quenching Quorum sensing Agroecosystem 

References

  1. Beeson WT, Iavarone AT, Hausmann CD, Cate JHD, Marletta MA (2011) Extracellular Aldonolactonase from Myceliophthora thermophile. Appl Environ Microbiol 77(2):650–656PubMedCrossRefGoogle Scholar
  2. Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159(9–10):699–708PubMedCrossRefGoogle Scholar
  3. Chankhamhaengdecha S, Hongvijit S, Srichaisupakit A, Charnchai P, Panbangred W (2013) Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes. BioMed Res Int vol. 2013Google Scholar
  4. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103(19):7460–7464PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chow JY, Xue B, Lee KH, Tung A, Wu L, Robinson RC, Yew WS (2010) Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J Biol Chem 285(52):40911–40920PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, González JE, Haines DC (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry (Mosc.) 46(50):14429–14437CrossRefGoogle Scholar
  7. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3(9):541–548PubMedCrossRefGoogle Scholar
  8. Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar. viciae. J Bacteriol 174(12):4026–4035PubMedPubMedCentralCrossRefGoogle Scholar
  9. Czajkowski R, Krzyżanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3(1):59–68Google Scholar
  10. Denny TP (1999) Autoregulator-dependent control of extracellular polysaccharide production in phytopathogenic bacteria. Eur J Plant Pathol 105(5):417–430CrossRefGoogle Scholar
  11. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci 97(7):3526–3531PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817PubMedCrossRefGoogle Scholar
  13. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68(4):1754–1759PubMedPubMedCentralCrossRefGoogle Scholar
  14. dos Reis Ponce A, Martins ML, de Araujo EF, Mantovani HC, Vanetti MCD (2012) AiiA quorum-sensing quenching controls proteolytic activity and biofilm formation by Enterobacter cloacae. Curr Microbiol 65(6):758–763CrossRefGoogle Scholar
  15. Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22(4):493–506PubMedCrossRefGoogle Scholar
  16. Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42(2):360–368PubMedCrossRefGoogle Scholar
  17. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72(1):22–34PubMedCrossRefGoogle Scholar
  18. Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH (2014) Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 77(6):1351–1358PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60(1):95–104Google Scholar
  20. Fray RG (2002) Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89(3):245–253PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750PubMedCrossRefGoogle Scholar
  22. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526PubMedPubMedCentralCrossRefGoogle Scholar
  23. Han Y, Chen F, Li N, Zhu B, Li X (2010) Bacillus marcorestinctum sp. nov., a novel soil acylhomoserine lactone quorum-sensing signal quenching bacterium. Int J Mol Sci 11(2):507–520PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38(6):704–713PubMedCrossRefGoogle Scholar
  26. Haudecoeur E, Planamente S, Cirou A, Tannières M, Shelp BJ, Moréra S, Faure D (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci 106(34):14587–14592PubMedPubMedCentralCrossRefGoogle Scholar
  27. He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32(5):842–857PubMedCrossRefGoogle Scholar
  28. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148(1):87–102PubMedCrossRefGoogle Scholar
  30. Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GP, Stewart GS, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33(6):1254–1266PubMedCrossRefGoogle Scholar
  31. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil Pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69(10):5941–5949PubMedPubMedCentralCrossRefGoogle Scholar
  32. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee J, Raju J, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21(10):1001–1011PubMedCrossRefGoogle Scholar
  33. Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australia Plant Pathol 35(4):411–418CrossRefGoogle Scholar
  34. Jafra S, Jalink H, Van Der Schoor R, Van Der Wolf JM (2006) Pectobacterium carotovorum subsp. carotovorum strains show diversity in production of and response to N-acyl homoserine lactones. J Phytopathol 154(11–12):729–739Google Scholar
  35. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in zea across boundaries of evolution, ethnography and ecology. Plos One 6(6):6 e20396Google Scholar
  36. Kalia VC (2013) Quorum sensing inhibitors: An overview. Biotechnol Adv 31(2):224–245PubMedCrossRefGoogle Scholar
  37. Khadar SM, Shunmugiah KP, Arumugam VR (2011) Inhibition of quorum-sensing-dependent phenotypic expression in Serratia marcescens by marine sediment Bacillus spp. SS4. Ann Microbiol 62(1):443–447CrossRefGoogle Scholar
  38. Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira H, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179(22):6986–6993PubMedPubMedCentralCrossRefGoogle Scholar
  39. Koch G, Nadal-Jimenez P, Reis CR, Muntendam R, Bokhove M, Melillo E, Dijkstra BW, Cool RH, Quax WJ (2014) Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ. Proc Natl Acad Sci USA 111(4):1568–1573PubMedPubMedCentralCrossRefGoogle Scholar
  40. Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M, Grond S, Streit WR (2011) Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 77(15):5089–5099PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lang J, Faure D (2014) Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Plant Biot Interact 5(14)2014Google Scholar
  42. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182(24):6921–6926PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47(3):849–860PubMedCrossRefGoogle Scholar
  44. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dyé F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37(1):81–97PubMedCrossRefGoogle Scholar
  45. Liu P, Gao Y, Huang W, Shao Z, Shi J, Liu Z (2012) A novel bioassay for high-throughput screening microorganisms with N-acyl homoserine lactone degrading activity. Appl Biochem Biotechnol 167(1):73–80PubMedCrossRefGoogle Scholar
  46. Mahmoudi E, Hasanzadeh N, Tabatabaei BES, Venturi V (2011) Virulence attenuation of Pectobacterium carotovorum using N-acyl-homoserine lactone degrading bacteria isolated from potato rhizosphere. Plant Pathol J 2011Google Scholar
  47. Mani A, Hameed S, Ramalingam S, Narayanan N (2012) Assessment of quorum quenching activity of Bacillus species against Pseudomonas aeruginosa MTCC 2297. Global J Pharmacol 6:118–125Google Scholar
  48. Martinelli D, Grossmann G, Séquin U, Brandl H, Bachofen R (2004) Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol 4(1):1–10CrossRefGoogle Scholar
  49. Martín-Rodríguez AJ, Reyes F, Martín J, Pérez-Yépez J, León-Barrios J, Couttolenc J, Espinoza C, Trigos Á, Martín VS, Norte M, Fernández JJ (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12(11):5503–5526PubMedPubMedCentralCrossRefGoogle Scholar
  50. Medina-Martínez MS, Uyttendaele M, Rajkovic A, Nadal P, Debevere J (2007) Degradation of N-acyl-l-homoserine lactones by Bacillus cereus in culture media and pork extract. Appl Environ Microbiol 73(7):2329–2332PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ (2010) AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 76(15):4933–4942PubMedPubMedCentralCrossRefGoogle Scholar
  52. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45(1):71–81PubMedCrossRefGoogle Scholar
  53. Molina L, Rezzonico F, Défago G, Duffy B (2005) Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 187(9):3206–3213PubMedPubMedCentralCrossRefGoogle Scholar
  54. Morohoshi T, Nakazawa S, Ebata A, Kato N, Ikeda T (2008) Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015. Biosci Biotechnol Biochem 72(7):1887–1893PubMedCrossRefGoogle Scholar
  55. Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single norway spruce needles and their role as pioneer decomposers. Mol Ecol 10(7):1801–1810PubMedCrossRefGoogle Scholar
  56. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J e250693Google Scholar
  57. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiol Read Engl 149(6):1541–1550Google Scholar
  58. Park SJ, Park SY, Ryu CM, Park SH, Lee JK (2008) The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J Microbiol Biotechnol 18(9):1518–1521PubMedGoogle Scholar
  59. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM, Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process, the use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int Biotechnol Res Int e576286Google Scholar
  60. Piper KR, Farrand SK (2000) Quorum sensing but not autoinduction of Ti plasmid conjugal transfer requires control by the opine regulon and the antiactivator TraM. J Bacteriol 182(4):1080–1088PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rajesh PS, Rai VR (2013) Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol 2(2):120–124Google Scholar
  62. Rajesh PS, Rai VR (2014a) Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiol Res 169(7–8):561–569PubMedCrossRefGoogle Scholar
  63. Rajesh PS, Rai VR (2014b) Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase. Biochem Biophys Res Commun 443(1):290–295PubMedCrossRefGoogle Scholar
  64. Rajesh PS, Rai VR (2016) Inhibition of QS-regulated virulence factors in Pseudomonas aeruginosa PAO1 and Pectobacterium carotovorum by AHL-lactonase of endophytic bacterium Bacillus cereus VT96. Biocatal Agric Biotechnol 7:154–163Google Scholar
  65. Rashid R, Morohoshi T, Someya N, Ikeda T (2011) Degradation of N-acylhomoserine lactone quorum sensing signaling molecules by potato root surface-associated Chryseobacterium strains. Microbes Environ JSME 26(2):144–148CrossRefGoogle Scholar
  66. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiol Read Engl 151(5):1325–1340CrossRefGoogle Scholar
  67. Robl D, Delabona P daS, Mergel CM, Rojas JD, Costa P dos S, Pimentel IC, Vicente VA, da Cruz Pradella JG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94Google Scholar
  68. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  69. Romero M, Diggle SP, Heeb S, Cámara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280(1):73–80PubMedCrossRefGoogle Scholar
  70. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interac 19(8):827–837CrossRefGoogle Scholar
  71. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9PubMedCrossRefGoogle Scholar
  72. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal Endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29(1):319–343CrossRefGoogle Scholar
  73. Shank EA, Klepac-Ceraj V, Collado-Torres L, Powers GE, Losick R, Kolter R (2011) Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc Natl Acad Sci 108(48):e1236–e1243PubMedPubMedCentralCrossRefGoogle Scholar
  74. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT-Food Sci Technol 43(4):573–583CrossRefGoogle Scholar
  75. Soliman SS, Trobacher CP, Tsao R, Greenwood JS, Raizada MN (2013) A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol 13:93PubMedPubMedCentralCrossRefGoogle Scholar
  76. Steidle A, Allesen-Holm A, Riedel A, Berg A, Givskov A, Molin A, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68(12):6371–6382PubMedPubMedCentralCrossRefGoogle Scholar
  77. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459PubMedCrossRefGoogle Scholar
  78. Trujillo ME, Riesco R, Benito P, Carro L (2015) Endophytic actinobacteria and the interaction of micromonospora and nitrogen fixing plants. Extreme Microbiol 1341Google Scholar
  79. Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65(2):271–278PubMedCrossRefGoogle Scholar
  80. Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiol Read Engl 151(10):3313–3322CrossRefGoogle Scholar
  81. Uroz S, Oger P, Chhabra SR, Cámara M, Williams P, Dessaux Y (2007) N-acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Arch Microbiol 187(3):249–256PubMedCrossRefGoogle Scholar
  82. Wang WZ, Morohoshi T, Ikenoya M, Someya N, Ikeda T (2010) AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 76(8):2524–2530PubMedPubMedCentralCrossRefGoogle Scholar
  83. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25(4):365–404PubMedCrossRefGoogle Scholar
  84. Wong CS, Yin WF, Choo YM, Sam CK, Koh CL, Chan KG (2012) Coexistence of quorum-quenching and quorum-sensing in tropical marine Pseudomonas aeruginosa strain MW3A. World J Microbiol Biotechnol 28(2):453–461PubMedCrossRefGoogle Scholar
  85. Wood DW (1996) Pierson LS (1996) The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168(1):49–53PubMedCrossRefGoogle Scholar
  86. Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soil 45(6):669–674CrossRefGoogle Scholar
  87. Yin WF, Tung HJ, Sam CK, Koh CL, Chan KG (2012) Quorum quenching Bacillus sonorensis isolated from soya sauce fermentation brine. Sensors 12(4):4065–4073PubMedPubMedCentralCrossRefGoogle Scholar
  88. Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci USA 104(28):11790–11795PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zamani M, Behboudi K, Ahmadzadeh M (2013) Quorum quenching by Bacillus cereus U92: a double-edged sword in biological control of plant diseases. Biocontrol Sci Technol 23(5):555–573CrossRefGoogle Scholar
  90. Zhang Z, Pierson LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67(9):4305–4315PubMedPubMedCentralCrossRefGoogle Scholar
  91. Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci 99(7):4638–4643PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Studies in MicrobiologyUniversity of MysoreMysoreIndia

Personalised recommendations