Bacterial Endophytes of Plants: Diversity, Invasion Mechanisms and Effects on the Host

  • Fernando Ibáñez
  • María Laura Tonelli
  • Vanina Muñoz
  • María Soledad Figueredo
  • Adriana FabraEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)


Plant inner tissues are colonized by bacterial organisms known as endophytes. The relatively recent application of culture independent and molecular high throughput techniques allowed the description of a large diversity of endophytic bacterial taxa. These microorganisms can be found in any plant organ, including fruits and legume nodules. Some endophytic bacteria benefit the host by several mechanisms, and their application to economically important crops represents an interesting alternative to the use of agrochemicals. However, more studies are required to clearly assess their effects on the hosts (especially in co-inoculation with other beneficial bacteria) and the molecular events that lead to the interaction between plants and endophytic microorganisms. In this chapter, we focus on bacterial endophytes from legumes and non-legumes plants, analyzing their diversity and effects on the hosts. We also discuss the endophytic colonization of legume nodules, with emphasis on the endophytic bacterial diversity, the mechanisms involved in the nodule invasion and their effects on the hosts.


Endophytes Biocontrol Symbiosis Rhizobia Legumes 


  1. Agrios G (1997) Plant pathology, 4th edn. Academic, San DiegoGoogle Scholar
  2. Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant pathogens: the European situation. Eur J Plant Pathol 114:329–341CrossRefGoogle Scholar
  3. Araujo W, Marcon J, Maccheroni W, Van Elsas J, Van Vuurde J, Azevedo J (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238CrossRefPubMedGoogle Scholar
  5. Bai Y, Zhou X, Smith D (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781CrossRefGoogle Scholar
  6. Bais H, Park S, Weir T, Callaway R, Vivanco J (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32CrossRefPubMedGoogle Scholar
  7. Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefPubMedGoogle Scholar
  8. Balachandar D Sandhiya G, Sugitha T, Kumar K (2006) Flavonoids and growth hormones influence endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. World J Microbiol Biotechnol 22:707–712CrossRefGoogle Scholar
  9. Barka A, Belarbi E, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera L. co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95CrossRefPubMedGoogle Scholar
  10. Bent E, Chanway C (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988CrossRefGoogle Scholar
  11. Bhattacharjee R, Singh A, Mukhopadhyay S (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209CrossRefPubMedGoogle Scholar
  12. Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth in lowland rice. Soil Sci Soc Am J 64:1644–1650CrossRefGoogle Scholar
  13. Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886CrossRefGoogle Scholar
  14. Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80CrossRefPubMedGoogle Scholar
  15. Carro L, Pujic P, Trujillo ME, Normand P (2013) Micromonospora is a normal inhabitant of actinorhizal nodules. J Biosci 38:685–693CrossRefPubMedGoogle Scholar
  16. Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hamerly AS (2016) Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Mol Biol 90:561–574CrossRefPubMedGoogle Scholar
  17. Chaintreuil C, Giraud E, Prin Y, Lorquin JB, Gillis M, de Laudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5477CrossRefPubMedCentralPubMedGoogle Scholar
  18. Chalk PM (2016) The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis. doi: 10.1007/s1399-016-0397-8 Google Scholar
  19. Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278CrossRefPubMedCentralPubMedGoogle Scholar
  20. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175CrossRefGoogle Scholar
  21. Cohen A, Travaglia C, Bottini R, Piccoli P (2009) Participation of abscisic acid and gibberellins produced byendophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  22. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693CrossRefPubMedCentralPubMedGoogle Scholar
  23. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  24. De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43:2384–2396CrossRefGoogle Scholar
  25. De Meyer SE, De Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11CrossRefGoogle Scholar
  26. Delaux PM, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci USA 112:13390–13395CrossRefPubMedCentralPubMedGoogle Scholar
  27. Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysasalsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475CrossRefPubMedGoogle Scholar
  28. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879Google Scholar
  29. Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17CrossRefPubMedGoogle Scholar
  30. Doty S (2011) Nitrogen-fixing endophytic bacteria for improved plant growth. In: Maheshwari DK (ed) Bacteria in agrobiology: Plant growth responses. Springer, Berlin, pp 183–199CrossRefGoogle Scholar
  31. Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L (2010) Interaction among Arachis hypogaea L. (peanut) andbeneficial soil microorganisms: how much is it known? Crit Rev Microbiol 36:179–194CrossRefPubMedGoogle Scholar
  32. Frommel M, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936CrossRefPubMedCentralPubMedGoogle Scholar
  33. Gaiero J, Mc Call C, Thompson K, Day A, Best S, Dunfield K (2013) Inside the root: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750CrossRefPubMedGoogle Scholar
  34. Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337CrossRefPubMedGoogle Scholar
  35. Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50CrossRefGoogle Scholar
  36. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252CrossRefGoogle Scholar
  37. Gutiérrez-Zamora M, Martínez_Romero E. 2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126Google Scholar
  38. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  39. Hardoim P, Van Overbeek L, Van Elsas J (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefPubMedGoogle Scholar
  40. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefPubMedCentralPubMedGoogle Scholar
  41. Hilali A, Prevost D, Broughton W, Antoun H (2001) Effets de l’inoculation avec des souches de Rhizobium leguminosarum biovar trifolii sur la croissance der bledansdeux sols der. Maroc Can J Microbiol 41:590–593CrossRefGoogle Scholar
  42. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309CrossRefPubMedGoogle Scholar
  43. Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonization of Bacillus subtilis in the roots of Robinia pseudoacacia. L Plant Biol 13:925–931CrossRefPubMedGoogle Scholar
  44. Ibañez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32:49–55CrossRefPubMedGoogle Scholar
  45. Ibañez F, Arroyo ME, Angelini J, Tonelli ML, Muñoz V, Ludueña L, Valetti L, Fabra A (2014) Non-rhizobial peanut nodule bacteria promote maize (Zea mays L.) and peanut (Arachis hypogaea L.) growth in a simulated crop rotation system. App Soil Ecol 84:208–212CrossRefGoogle Scholar
  46. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906CrossRefPubMedGoogle Scholar
  47. Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573CrossRefPubMedGoogle Scholar
  48. Kandel S, Herschberger N, Kim S, Doty S (2015) Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 55:1765–1772CrossRefGoogle Scholar
  49. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81CrossRefPubMedGoogle Scholar
  50. Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904CrossRefPubMedGoogle Scholar
  51. Leplat J, Friberg H, Abid M, Steinberg C (2013) Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron Sustain Dev 33:97–111CrossRefGoogle Scholar
  52. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  53. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. Appl Microbiol Biotechnol 93:1745–1753CrossRefPubMedGoogle Scholar
  54. Lupwayi N, Clayton G, Hanson K, Rice W, Bierderbeck V (2004) Endophytic rhizobia in barley, wheat, and canola roots. Can J Plant Sci 84:37–45CrossRefGoogle Scholar
  55. Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380CrossRefPubMedGoogle Scholar
  56. Martínez-Hidalgo P, Galindo-Villardón P, Trujillo M, Igual J, Martínez-Molina E. Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria (2014) Scientific Reports 4:6389, doi: 10.1038/srep06389
  57. Meneses C, Rouws L, Simões-AraújoJ Vidal M, Baldani J (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458CrossRefPubMedGoogle Scholar
  58. Moënne-Loccoz Y, Mavingui P, Combes C, Steinberg C (2015) Microorganisms and biotic interactions. In: Bertrand JC et al (eds) Environmental microbiology: fundamentals and applications. Springer, The Netherlands, pp 395–444Google Scholar
  59. Morris CE, Sands DC, Vanneste JL, Montarry J, Oakley B, Guilbaud C, Glaux C (2010). Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio 1:e00107–10Google Scholar
  60. Mrabet M, Mnasri B, Romdhane SB, Laguerre G, Aouani ME, Mhamdi R (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiol Ecol 56:304–309CrossRefPubMedGoogle Scholar
  61. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400CrossRefPubMedGoogle Scholar
  62. Pandya M, Kumar GN, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett 348:58–65CrossRefPubMedGoogle Scholar
  63. Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiate. Microbiol 84:80–89CrossRefGoogle Scholar
  64. Peix A, Carro L, Cerda-Castillo E, Tejedor C, Ramírez-Bahena MH, Velázquez E (2012) New research on the genetic diversity of non-rhizobial endophytes inhabiting legume nodules. In: Amaya JAC, Jiménez, MMF (eds.) Genetic diversity: new research, Nova Science Publishers, pp 191–201Google Scholar
  65. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42CrossRefGoogle Scholar
  66. Peng SB, Biswas JC, Ladha JK, Yaneshwar PG, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94:925–929CrossRefGoogle Scholar
  67. Prayitno Stefaniak JJ, McIver J, Weinman J, Dazzo FB, Ladha JK, Baraquio W, Yanni YG, Rolfe BG (1999) Interactions of rice seedlings with nitrogen-fixing bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535CrossRefGoogle Scholar
  68. Prieto P, Schilirò E, Maldonado-González M, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of live roots by Pseudomonas spp. With biocontrol activity. Microb Ecol 62:435–445CrossRefPubMedCentralPubMedGoogle Scholar
  69. Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550CrossRefPubMedGoogle Scholar
  70. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144CrossRefPubMedGoogle Scholar
  71. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443CrossRefPubMedGoogle Scholar
  72. Rinaudi L, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11CrossRefPubMedGoogle Scholar
  73. Rojas A, Olguin G, Lick B, Bashan Y (2001) Synergism between Phyllobacterium sp. (N 2 fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187CrossRefPubMedGoogle Scholar
  74. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefPubMedGoogle Scholar
  75. Rudrappa T, Czymmek K, Paré P, Bais H (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556CrossRefPubMedCentralPubMedGoogle Scholar
  76. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M, Glick B (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99CrossRefPubMedGoogle Scholar
  77. Savage D, Barbetti M, MacLeod W, Salam M, Renton M (2012) Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Microb Ecol 63:578–585CrossRefPubMedGoogle Scholar
  78. Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial Root Endophytes. Berlin, Germany, Springer, pp 1–13Google Scholar
  79. Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274CrossRefPubMedGoogle Scholar
  80. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fert Soils 25(1):13–19CrossRefGoogle Scholar
  81. Tonelli ML, Furlán A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant Pathol 75:100–105CrossRefGoogle Scholar
  82. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martinez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriariamyrtifolia. Int J Syst Evol Microbiol 56:2381–2385CrossRefPubMedGoogle Scholar
  83. Trujillo ME, Kroppenstedt RM, Fernandez-Molinero C, Schumann P, Martinez-Molina E (2007) Micromonospora lupini sp. nov. andMicromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804CrossRefPubMedGoogle Scholar
  84. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281CrossRefPubMedGoogle Scholar
  85. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2014) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50CrossRefGoogle Scholar
  86. Valdés M, Perez NO, Estrada-de Los Santos P, Caballero-Mellado J, Pena-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466CrossRefPubMedCentralPubMedGoogle Scholar
  87. Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983CrossRefPubMedGoogle Scholar
  88. Velázquez E, Martínez-Hidalgo P, Carro L, Alonso P, Peix A, Trujillo ME, Martínez-Molina E (2013) Nodular endophytes: an untapped diversity. In: González-López J (ed) Rodelas González MB. Ecology and Applications. CRC Press, Beneficial Plant-Microbial Interactions, pp 215–235Google Scholar
  89. Villate L, Morin E, Demangeat G, Van Helden M, Esmenjaud D (2012) Control of Xiphinema index populations by fallow plants under greenhouse and field conditions. Phytopathology 102:627–634CrossRefPubMedGoogle Scholar
  90. Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microbial Ecol 52:436–443CrossRefGoogle Scholar
  91. Wilson D (1995) Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  92. Yanni Y, Rizk R, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus R, Buckley D, Schmidt T, Mateos P, Ladha J, Dazzo F (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  93. Yanni YG, Rizk R, Abd El-Fattah F, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth R, Martinez-Molina E, Mateos E, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna J, Rolfe B, Ladha J, Hill J, Mujoo R, Ng P, Dazzo F (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum biovar trifolii with rice roots. Aust J Plant Physiol 62:845–870Google Scholar
  94. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:93–375CrossRefGoogle Scholar
  95. Zgadzaj R, James E, Kelly S, Kawaharada Y, de Jonge N, Jensen D, Madsen L, Radutoiu SA (2015) Legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11:e1005280CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fernando Ibáñez
    • 1
  • María Laura Tonelli
    • 1
  • Vanina Muñoz
    • 1
  • María Soledad Figueredo
    • 1
  • Adriana Fabra
    • 1
    Email author
  1. 1.Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas Y NaturalesUniversidad Nacional de Río CuartoRío Cuarto (Córdoba)Argentina

Personalised recommendations