Skip to main content

Bacterial Endophytes of Plants: Diversity, Invasion Mechanisms and Effects on the Host

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 15))

Abstract

Plant inner tissues are colonized by bacterial organisms known as endophytes. The relatively recent application of culture independent and molecular high throughput techniques allowed the description of a large diversity of endophytic bacterial taxa. These microorganisms can be found in any plant organ, including fruits and legume nodules. Some endophytic bacteria benefit the host by several mechanisms, and their application to economically important crops represents an interesting alternative to the use of agrochemicals. However, more studies are required to clearly assess their effects on the hosts (especially in co-inoculation with other beneficial bacteria) and the molecular events that lead to the interaction between plants and endophytic microorganisms. In this chapter, we focus on bacterial endophytes from legumes and non-legumes plants, analyzing their diversity and effects on the hosts. We also discuss the endophytic colonization of legume nodules, with emphasis on the endophytic bacterial diversity, the mechanisms involved in the nodule invasion and their effects on the hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrios G (1997) Plant pathology, 4th edn. Academic, San Diego

    Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant pathogens: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Araujo W, Marcon J, Maccheroni W, Van Elsas J, Van Vuurde J, Azevedo J (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Zhou X, Smith D (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Bais H, Park S, Weir T, Callaway R, Vivanco J (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balachandar D Sandhiya G, Sugitha T, Kumar K (2006) Flavonoids and growth hormones influence endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. World J Microbiol Biotechnol 22:707–712

    Article  Google Scholar 

  • Barka A, Belarbi E, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera L. co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bent E, Chanway C (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Bhattacharjee R, Singh A, Mukhopadhyay S (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth in lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  PubMed  Google Scholar 

  • Carro L, Pujic P, Trujillo ME, Normand P (2013) Micromonospora is a normal inhabitant of actinorhizal nodules. J Biosci 38:685–693

    Article  PubMed  Google Scholar 

  • Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hamerly AS (2016) Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Mol Biol 90:561–574

    Article  CAS  PubMed  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin JB, Gillis M, de Laudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chalk PM (2016) The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis. doi:10.1007/s1399-016-0397-8

    Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  • Cohen A, Travaglia C, Bottini R, Piccoli P (2009) Participation of abscisic acid and gibberellins produced byendophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43:2384–2396

    Article  Google Scholar 

  • De Meyer SE, De Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11

    Article  Google Scholar 

  • Delaux PM, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci USA 112:13390–13395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysasalsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17

    Article  PubMed  Google Scholar 

  • Doty S (2011) Nitrogen-fixing endophytic bacteria for improved plant growth. In: Maheshwari DK (ed) Bacteria in agrobiology: Plant growth responses. Springer, Berlin, pp 183–199

    Chapter  Google Scholar 

  • Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L (2010) Interaction among Arachis hypogaea L. (peanut) andbeneficial soil microorganisms: how much is it known? Crit Rev Microbiol 36:179–194

    Article  CAS  PubMed  Google Scholar 

  • Frommel M, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaiero J, Mc Call C, Thompson K, Day A, Best S, Dunfield K (2013) Inside the root: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252

    Article  CAS  Google Scholar 

  • Gutiérrez-Zamora M, Martínez_Romero E. 2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim P, Van Overbeek L, Van Elsas J (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed Central  PubMed  Google Scholar 

  • Hilali A, Prevost D, Broughton W, Antoun H (2001) Effets de l’inoculation avec des souches de Rhizobium leguminosarum biovar trifolii sur la croissance der bledansdeux sols der. Maroc Can J Microbiol 41:590–593

    Article  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonization of Bacillus subtilis in the roots of Robinia pseudoacacia. L Plant Biol 13:925–931

    Article  CAS  PubMed  Google Scholar 

  • Ibañez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32:49–55

    Article  PubMed  Google Scholar 

  • Ibañez F, Arroyo ME, Angelini J, Tonelli ML, Muñoz V, Ludueña L, Valetti L, Fabra A (2014) Non-rhizobial peanut nodule bacteria promote maize (Zea mays L.) and peanut (Arachis hypogaea L.) growth in a simulated crop rotation system. App Soil Ecol 84:208–212

    Article  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    Article  CAS  PubMed  Google Scholar 

  • Kandel S, Herschberger N, Kim S, Doty S (2015) Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 55:1765–1772

    Article  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  PubMed  Google Scholar 

  • Leplat J, Friberg H, Abid M, Steinberg C (2013) Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron Sustain Dev 33:97–111

    Article  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi N, Clayton G, Hanson K, Rice W, Bierderbeck V (2004) Endophytic rhizobia in barley, wheat, and canola roots. Can J Plant Sci 84:37–45

    Article  Google Scholar 

  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo M, Igual J, Martínez-Molina E. Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria (2014) Scientific Reports 4:6389, doi:10.1038/srep06389

  • Meneses C, Rouws L, Simões-AraújoJ Vidal M, Baldani J (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Moënne-Loccoz Y, Mavingui P, Combes C, Steinberg C (2015) Microorganisms and biotic interactions. In: Bertrand JC et al (eds) Environmental microbiology: fundamentals and applications. Springer, The Netherlands, pp 395–444

    Google Scholar 

  • Morris CE, Sands DC, Vanneste JL, Montarry J, Oakley B, Guilbaud C, Glaux C (2010). Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio 1:e00107–10

    Google Scholar 

  • Mrabet M, Mnasri B, Romdhane SB, Laguerre G, Aouani ME, Mhamdi R (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiol Ecol 56:304–309

    Article  CAS  PubMed  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  PubMed  Google Scholar 

  • Pandya M, Kumar GN, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett 348:58–65

    Article  CAS  PubMed  Google Scholar 

  • Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiate. Microbiol 84:80–89

    Article  CAS  Google Scholar 

  • Peix A, Carro L, Cerda-Castillo E, Tejedor C, Ramírez-Bahena MH, Velázquez E (2012) New research on the genetic diversity of non-rhizobial endophytes inhabiting legume nodules. In: Amaya JAC, Jiménez, MMF (eds.) Genetic diversity: new research, Nova Science Publishers, pp 191–201

    Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Peng SB, Biswas JC, Ladha JK, Yaneshwar PG, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94:925–929

    Article  Google Scholar 

  • Prayitno Stefaniak JJ, McIver J, Weinman J, Dazzo FB, Ladha JK, Baraquio W, Yanni YG, Rolfe BG (1999) Interactions of rice seedlings with nitrogen-fixing bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535

    Article  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González M, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of live roots by Pseudomonas spp. With biocontrol activity. Microb Ecol 62:435–445

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rinaudi L, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rojas A, Olguin G, Lick B, Bashan Y (2001) Synergism between Phyllobacterium sp. (N 2 fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Czymmek K, Paré P, Bais H (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M, Glick B (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Savage D, Barbetti M, MacLeod W, Salam M, Renton M (2012) Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Microb Ecol 63:578–585

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial Root Endophytes. Berlin, Germany, Springer, pp 1–13

    Google Scholar 

  • Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fert Soils 25(1):13–19

    Article  Google Scholar 

  • Tonelli ML, Furlán A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant Pathol 75:100–105

    Article  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martinez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriariamyrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Fernandez-Molinero C, Schumann P, Martinez-Molina E (2007) Micromonospora lupini sp. nov. andMicromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2014) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Valdés M, Perez NO, Estrada-de Los Santos P, Caballero-Mellado J, Pena-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  PubMed Central  PubMed  Google Scholar 

  • Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983

    Article  CAS  PubMed  Google Scholar 

  • Velázquez E, Martínez-Hidalgo P, Carro L, Alonso P, Peix A, Trujillo ME, Martínez-Molina E (2013) Nodular endophytes: an untapped diversity. In: González-López J (ed) Rodelas González MB. Ecology and Applications. CRC Press, Beneficial Plant-Microbial Interactions, pp 215–235

    Google Scholar 

  • Villate L, Morin E, Demangeat G, Van Helden M, Esmenjaud D (2012) Control of Xiphinema index populations by fallow plants under greenhouse and field conditions. Phytopathology 102:627–634

    Article  PubMed  Google Scholar 

  • Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microbial Ecol 52:436–443

    Article  Google Scholar 

  • Wilson D (1995) Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yanni Y, Rizk R, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus R, Buckley D, Schmidt T, Mateos P, Ladha J, Dazzo F (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk R, Abd El-Fattah F, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth R, Martinez-Molina E, Mateos E, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna J, Rolfe B, Ladha J, Hill J, Mujoo R, Ng P, Dazzo F (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum biovar trifolii with rice roots. Aust J Plant Physiol 62:845–870

    Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:93–375

    Article  Google Scholar 

  • Zgadzaj R, James E, Kelly S, Kawaharada Y, de Jonge N, Jensen D, Madsen L, Radutoiu SA (2015) Legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11:e1005280

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Fabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibáñez, F., Tonelli, M.L., Muñoz, V., Figueredo, M.S., Fabra, A. (2017). Bacterial Endophytes of Plants: Diversity, Invasion Mechanisms and Effects on the Host. In: Maheshwari, D. (eds) Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_2

Download citation

Publish with us

Policies and ethics