Advertisement

Endophytic Fungi: Eco-Friendly Future Resource for Novel Bioactive Compounds

  • Sardul Singh SandhuEmail author
  • Suneel Kumar
  • Ravindra Prasad Aharwal
  • Monika Nozawa
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)

Abstract

The current research focuses on the isolation of bioactive compounds from the natural sources which have immense potential for pharmaceutical value. Pharmaceutical biology perceives plants as a unique resource of potentially precious remedial bioactive metabolites. But due to slow growth and harvest of endangerd plants species pose a threat and inbalance in the biodiversity of plants. However, most of the plant species occur on the earth to be a reservoir of vast numbers of endophytic microorganisms like bacteria, actinomycetes, and fungi that play an imperative role in the production of novel secondary metabolites for the defense of host and can be utilized for treatment of a number of ailments. Search for isolation and characterization of different plant-associated fungal origin novel bioactive metabolites are given an immense attention to global investigators. The endophytic fungi are an enormous manufacturer of bioactive compounds which can be widely used in the medical, agricultural, and industrial application. Therefore, there is a need to isolate, identify, and characterize these bioactive compounds from the endophytic fungi. Further, research on the biology of endophytes is also required to saturate at the molecular level for a better understanding of host–endophyte interactions and biosynthesis of secondary metabolites thereby. Modern technologies have opened new avenue on endophytic research as natural “warehouse” with very little has been able to tap from this source so far and among the reported natural bioactive metabolites. Thus, there is more research and studies on these groups of endophytic microorganisms are required. The collaboration among chemists and mycologists are needed to comprehend the biology of endophytic fungi and may help to learn the different pathways involved in synthesis of bioactive compounds, and the ecology of the organisms will help to understand the optimization parameters of the organism for the maximum metabolites production, and mycologist will have the chance to increase further imminence into the multifarious diversity of endophytic fungal species. The present review is made on endophytic fungi, biosynthetic pathways responsible for the production of novel bioactive compounds from these microorganisms and their applications.

Keywords

Endophytic fungi Pharmacophores Microorganisms Taxol Antimicrobial 

References

  1. Aggarwal GP, Hasija SK (1980) Microorganism in the laboratory. In: A laboratory guide of mycology, microbiology and plant pathology. Ravi printers, Jabalpur India Google Scholar
  2. Aharwal RP, Kumar S, Sandhu SS (2016) Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment. J App Pharm Sci 6(10):242–254CrossRefGoogle Scholar
  3. Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F et al (2000) Biological characterization of fusapyrone and deoxyfusapyrone two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63(8):1131–1135CrossRefPubMedGoogle Scholar
  4. Bacon CW, White JF (1994) Biotechnology of endophytic fungi of grasses. CRC Press, Boca RatonGoogle Scholar
  5. Bastaki S (2005) Review: diabetes mellitus Mappersons and its treatment. Int J Diab Metabol 13:111–134Google Scholar
  6. Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Erdlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St PaulGoogle Scholar
  7. Bram RJ, Hung DT, Martin PK, Schreiber SL, Crabtree GR (1993) Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol Cell Biol 13:4760–4769CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? microbial endophytes. Marcel Dekker, New York, pp 421–452Google Scholar
  9. Cabral D, Cafaro MJ, Saidman B, Lugo M, Reddy PV, White JF Jr (1999) Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia 91:315–325CrossRefGoogle Scholar
  10. Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9CrossRefGoogle Scholar
  11. Carvalho PLND, Oliveira PA, Gois-Ruiz ALT, Alencar SMD, Pfenning LH, Carvalho JED et al (2012) Paraconiothyrium sp. P83F4/1: antioxidant and antiproliferative activities an endophytic fungus associated with Rheedia brasiliensis plant. Int J Biotech Well Indus 1:172–176Google Scholar
  12. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69(1):10–16CrossRefGoogle Scholar
  13. Cox RJ, Simpson TJ (2009) Complex enzymes in microbial natural product biosynthesis, part B: Polyketides, aminocoumarins and carbohydrates. Chapter 3: Fungal type I polyketide synthases. Methods Enzymol 459:49–98CrossRefPubMedGoogle Scholar
  14. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cui J, Guo T, Chao J, Wang M (2016) Potential of endophytic fungi Phialocephala fortinii Rac56 in Rhodiola plant to produce Salidroside and p-Tyrosol. Molecule 21(502):2–13Google Scholar
  16. Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK (2002) Naphthalene an insect repellent is produced by Muscodor vitigenus a novel endophytic fungus. Microbiol 148:3737–3741CrossRefGoogle Scholar
  17. De Bary HA (1884) Vergleichende Morphologie und Biologie der Pilze Mycetozoen und Bacterien. Verlag von Wilhelm Engelmann, LeipzigCrossRefGoogle Scholar
  18. Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  19. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. The J Antibiot 62:5–16Google Scholar
  20. Deshmukh S, Huckelhoven R, Schafer P (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Nat Acad Sci 49:18450–18457CrossRefGoogle Scholar
  21. Dewick PM (1997) Medicinal natural products: a biosynthetic approach. Wiley, New YorkGoogle Scholar
  22. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dompeipen EJ, Srikandace Y, Suharso WP, Cahyana H, Simanjuntak P (2011) Potential endohytic microbes’ selection for anti-diabetic bioactive compounds production. Asia J Biochem 6(6):465–471CrossRefGoogle Scholar
  24. Domsch KH, Gamas W, Anderson TH (1980) Compendium of soil fungi. Academic press, New York, pp 168–169Google Scholar
  25. Domsch KH, Gams W, Anderson TH (2007). Compendium of soil fungi. (2nd eds) IHW—Verlag, EchingGoogle Scholar
  26. Egorov N (1995) Microorganisms- antagonists and biological methods for evaluation of antibiotic activity. Vissha shkola, Moskva, p 200Google Scholar
  27. Elya B, Katrin, Munim A, Yuliastuti W, Bangun A, Kurnia SE (2012) Screening of α-glucosidase inhibitory activity from some plants of apocynaceae, clusiaceae, euphorbiaceae,and rubiaceae. J Bio med Biotechnol, 1–6Google Scholar
  28. Findlay JA, Buthelezi S, Li G, Seveck M, Miller JD (1997) Insect toxins from an endophytic fungus from Wintergreen. J Nat Prod 60:1214–1215CrossRefGoogle Scholar
  29. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488CrossRefPubMedGoogle Scholar
  30. Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257CrossRefGoogle Scholar
  31. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem Rev 106:3468–3496CrossRefPubMedGoogle Scholar
  32. Fitriani A, Herdiansyah SA (2016) Detection of Nonribosomal peptide synthetase (NRPS) genes on bacterial endophytes from Vetiveria zizanioides L. and Ageratum conyzoides L. Int J Pharm Sci Rev Res 36(1):124–128Google Scholar
  33. Freeman EM (1904) The seed fungus of Lolium temulentum L. Phil Trans R Soc Lond (Biol) 196:1–27CrossRefGoogle Scholar
  34. Fukami A, Nakamura T, Kim YP, Shiomi K, Hayashi M, Nagai T et al (2000) A new anti-influenza virus antibiotic-10-norparvulenone from Microsphaeropsis sp. FO-5050. J Antibiotics 53:1215–1218CrossRefGoogle Scholar
  35. Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bio-prospecting and antifungal potential of chitinolytic microorganisms. Afric J Biotechnol 5:54–72Google Scholar
  36. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):505–526CrossRefGoogle Scholar
  38. Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis (Palmae) using morphological and molecular techniques. New Phytol 147:617–630CrossRefGoogle Scholar
  39. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive Natural Products from endophytes: a review. Appl Biochem Microbiol 44:136–142CrossRefGoogle Scholar
  40. Gupte M, Kulkarni P, Ganguli BN (2002) Antifungal antibiotics. Appl Microbiol Biotechnol 58:46–57CrossRefPubMedGoogle Scholar
  41. Haider M, Hamzah AH, Ali HG (2009) Physiological regulation of protease and antibiotics in Penicillium sp. using submerged and solid state fermentation techniques. J Engi Sci Technol 4(1):81–89Google Scholar
  42. Hallman J, Sikora RA (1994) Influence of Fusarium oxysporum, a mutualistic fungal endophyte on Meloidogyne incognita infection of tomato. J Plant Disease Prot 101:475–481Google Scholar
  43. Hanefeld M, Schaper F (2007) The role of Alpha glucosidase inhibitors (acarbose). In: Mogensen CE (ed) Pharmacotherapy of diabetes: new developments improving life and prognosis for diabetic patient. Springer Science-Business Media, New YorkGoogle Scholar
  44. Hanson JR (2003) The classes of natural product and their isolation. In: Natural products: the secondary metabolites. The Royal Society of ChemistryGoogle Scholar
  45. Hay RJ (2003) Antifungal drugs used for systemic mycoses. Dermatol Clin 21:577–587CrossRefPubMedGoogle Scholar
  46. Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190CrossRefPubMedGoogle Scholar
  47. Hirsch G, Braun U (1992) Communities of parasitic microfungi. In: Winterhoff W (ed) Handbook of vegetative science, Volume 19. Fungi in vegetation science. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 225–250Google Scholar
  48. Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416CrossRefPubMedGoogle Scholar
  49. Hranueli D, Peric N, Borovicka B (2001) Molecular biology of polyketide biosynthesis. Food Biotechnol 39(3):203–213Google Scholar
  50. Iznaga Y, Lemus M, González L, Garmendía L, Nadal L, Vallin C (2004) Antifungal activity of Actinomycetes from Cuban soils. Phytother Res 18:494–496CrossRefPubMedGoogle Scholar
  51. Izumi E, Ueda-Nakamura T, Veiga VF Jr, Pinto AC, Nakamura CV (2012) Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J Med Chem 55(7):2994–3001CrossRefPubMedGoogle Scholar
  52. Jalgaonwala RE, Vishwas B, Raghunath M, Mahajan T (2011) A review: Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32Google Scholar
  53. Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 10:194–200CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jianglin Y, Mou Y, Shan T, Li L, Zhou L, Wang M et al (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15:7961–7970Google Scholar
  55. Jouda JB, Fopossib JLD, Mbazoaa CD, Wandji J (2016) Antibacterial activity of the major compound of an endophytic fungus isolated from Garcinia preussii. J Appl Pharma Sci 6(6):026–029CrossRefGoogle Scholar
  56. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947CrossRefPubMedGoogle Scholar
  57. Kiranmayi MU, Sudhakar P, Sreenivasulu K, Vijayalakshmi M (2011) Optimization of culturing conditions for improved production of bioactive metabolites by Pseudonocardia sp. VUK-10. Mycobiol 39(3):174–181Google Scholar
  58. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PloS One, 16;8(9):e71805Google Scholar
  59. Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. Rijeka, Croatia, InTech, pp 241–266Google Scholar
  60. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294CrossRefPubMedGoogle Scholar
  61. Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899CrossRefPubMedGoogle Scholar
  62. Lilly VG, Barnett HL (1951) Physiology of fungi. Mc Graw Hill Book Co. Inc., New York, Toronto, LondonGoogle Scholar
  63. Manitto P, Sammes PG (1981) Biosynthesis of natural products. Ellis Horwood Ltd. Mao XB, Eksriwong T, Chauvatcharin S and Zhong JJ (2005). Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem, 40(5):1667–1672Google Scholar
  64. Merlin JN, Nimal IVS, Christhudas KP, Agastian P (2013) Optimization of growth and bioactive metabolite production from Fusarium solani. Asia J Pharma Clin Res 6(3):98–103Google Scholar
  65. Miles CO, Mena ME, Jacobs SWL, Garthwaite I, Lane GA, Prestidge RA et al (1998) Endophytic fungi in indigenous Australasian grasses associated with toxicity to livestock. Appl Env Microbiol 64:601–606Google Scholar
  66. Obuchi T, Kondoh H, Omura S, Yang JS, Liang XT (1990) Armillaric acid, a new antibiotic produced by Armillaria mellea. Plants Med 56:198–201CrossRefGoogle Scholar
  67. Owen NL, Hundley N (2004) Endophytes - The chemical synthesizers inside plants. Sci Prog 87(2):79–99CrossRefPubMedGoogle Scholar
  68. Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of phyllosphere. Cambridge University Press, Cambridge, UK.Google Scholar
  69. Pimentel MR, Molina G, Dionısio AP, Junior RM, Pastore GM (2010) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Intract, 1–11Google Scholar
  70. Pocasangre L, Sikora RA, Vilich V, Schuster RP (2000) Survey of banana endophytic fungi from Central America and screening for biological control of the burrowing nematode (Radopholus simili). Info Musa 9:3–5Google Scholar
  71. Premjanu N, Jayanthy C (2012) Endophytic fungi a repository of bioactive compounds: a review. Int J Institutional Pharm Life Sci 2(1):135–162Google Scholar
  72. Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S (2009) Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbio Biotechnol 25:399–406CrossRefGoogle Scholar
  73. Radu S, Kqueen CY (2003) Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumour activity. Malaysia J Med Sci 93:23–33Google Scholar
  74. Rai MK, Verma A (2005) Arbuscular mycorrhiza-like Biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Elec J Biotechnol 8:1–4CrossRefGoogle Scholar
  75. Rai MK, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania sonmifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128CrossRefPubMedGoogle Scholar
  76. Rakshith D, Sreedharamurthy S (2010) Endophytic fungi: ‘Trapped’ or ‘hidden’ store houses of bioactive compounds within plants. A Review. J Pharm Res 3(12):2986–2989Google Scholar
  77. Ramadanis R, Soemiati A, Munim A (2012) Isolation and glucosidase inhibitory activity of endophytic fungi from Mahogany (Swietenia macrophylla King) seeds. Int J Med Aroma Plants 2(3):447–452Google Scholar
  78. Raviraja NS, Sridhar KR, Barlocher F (1996) Endophytic aquatic hyphomycetes of roots of plantation crops and ferns from India. Sydowia 48:152–160Google Scholar
  79. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat adapted symbiosis. ISME J 2(4):404–416CrossRefPubMedGoogle Scholar
  80. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujo WL, Santos DR et al (2005) Diversity of endophytic fungal community of Cacao (Teobroma cacao L.) and biological control of Crinipellis perniciosa causal agent of witches broom disease. Int J Biol Sci 1:24–33CrossRefPubMedPubMedCentralGoogle Scholar
  81. Samuel P, Prince L, Prabakaran A (2011) Antibacterial Activity of marine derived fungi collected from South East Coast of Tamilnadu. India. J Microbiol Biotechnol Res 1(4):86–94Google Scholar
  82. Sandey K, Aharwal RP, Kumar S, Sandhu SS (2015) Production and optimization of antibacterial metabolites from endophytic fungi Nigrospora sp.ML#3. J Appl Pharm Sci, 5(11):031–037Google Scholar
  83. Sandhu SS (1989) Epizootiological studies on Beauveria bassiana parasitizing Heliothis armigera Hub. Pod borer of gram (Cicer arietinum Linn.) PhD thesis, R.D. University, Jabalpur (M.P.) IndiaGoogle Scholar
  84. Sandhu SS (2010) Recombinanat DNA technology. I.K. International Publishing house Pvt. Ltd., New Delhi IndiaGoogle Scholar
  85. Sandhu SS, Aharwal RP, Kumar S (2014a) Isolation and antibacterial property of endophytic fungi isolated from Indian medicinal plant Calotropis procera (Linn.) R. Br. World J Pharm Pharm Sci 3(5):678–691Google Scholar
  86. Sandhu SS, Kumar S, Aharwal RP, Shukla H, Rajak RC (2014b) Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharma Pharma Sci 3(2):1179–1797Google Scholar
  87. Sauer M (2002) Estimating polyketide metabolic potential among nonsporulating fungal endophytes of Vaccinium macrocarpon. Mycol Res 106:460–470CrossRefGoogle Scholar
  88. Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Gen Biol 33:69–82CrossRefGoogle Scholar
  89. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbiosis of grasses with seed-borne fungal endophytes. Ann Rev Plant Biol 55:315–340CrossRefGoogle Scholar
  90. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686CrossRefPubMedGoogle Scholar
  91. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450 Google Scholar
  92. Schumann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124(4):690–703CrossRefPubMedGoogle Scholar
  93. Schwarzer D, Marahiel MA (2001) Multimodular biocatalysts for natural product assembly. Naturwissenschaften 88:93–101CrossRefPubMedGoogle Scholar
  94. Shan T, Lou J, Gao S, Zhou Y, Sun W, Luo C, Zhou L (2012) Antibacterial activity of the endophytic fungi from a traditional Chinese herb Paris polyphylla var. chinensis. Afr. J Microbiol 6(14):3440–3446Google Scholar
  95. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechn 166:486–520CrossRefGoogle Scholar
  96. Smith S, Tsai SC (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041–1072Google Scholar
  97. Stack D, Neville C, Doyle S (2007) Non-ribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiol 153:1297–1306CrossRefGoogle Scholar
  98. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416CrossRefPubMedGoogle Scholar
  99. Stone K, Bacon EW, White F (2000) An Overview of endophytic microbes: endophytism defined. In: Bacon EW, White F (eds) Microbial endophytes. Marcel Dekker Inc., New York, Basel, pp 3–29Google Scholar
  100. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mole Biol Rev 67:491–502Google Scholar
  101. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017CrossRefPubMedGoogle Scholar
  102. Suthindhiran KR, Jayasri MA, Kannabiran K (2009) Α–Glucosidase and α–amylase inhibitory activity of Micromonospora sp. VITSDK3 (EU551238). Int J Integrative Biol 6(3):115–120Google Scholar
  103. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefPubMedGoogle Scholar
  104. Taylor J, Hyde K, Jones E (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortune, within and outside its natural geographic range. New Phytol 142:335–346CrossRefGoogle Scholar
  105. Tenguria RK, Khan FN, Quereshi S (2011) Endophytes - Mines of pharmacological therapeutics. World J Sci Tech 1(5):127–149Google Scholar
  106. Theantana T, Kanjanapothi D, Lumyong S (2011) in vitro inhibition of lipid peroxidation and the antioxidant system of endophytic fungi from Thai Medicinal Plants. Chiang Mai J Sci 39(3):429–444Google Scholar
  107. Uma SR, Ramesha BT, Ravikanth G, Rajesh PG, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of N. nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system. In: Ramawat KG, Merillion J (eds) Bioactive molecules and medicinal plants. Springer, BerlinGoogle Scholar
  108. Verdine GL (1996) The combinatorial chemistry of nature. Nature 7(384):11–13Google Scholar
  109. Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A et al (1998) Piriformospora indica a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  110. Vining LC (1990) Functions of secondary metabolites. Rev Microbiol 44:427Google Scholar
  111. Wall ME, Wani MC, Cook CE, Palmer KH, Mcphail AT, Sim GA (1966) Plant antitumor agents; the isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88(16):3888–3890CrossRefGoogle Scholar
  112. Wilson D (1993) Fungal endophytes: out of sight but should not to be our mind. Oikos 68:379–384CrossRefGoogle Scholar
  113. Wu Yougen, Girmy S, Silva VMD, Perry B, Hu X, Tan GT (2015) The role of endophytic fungus in the anticancer activity of Morrind citrifolia Linn. (Noni). Evid Based Complement Alternat Med, 1–8Google Scholar
  114. Yin H, Zhao Q, Sun FM, An T (2009) Gentiopicrin-producing endophytic fungus isolated from Gentiana macrophylla. Phytomed 16:793–797CrossRefGoogle Scholar
  115. Zain ME, Razak AA, El-Sheikh HH, Soliman HG, Khalil AM (2009) Influence of growth medium on diagnostic characters of Aspergillus and Penicillium species. Afr J Microbiol Res 3(5):280–286Google Scholar
  116. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771CrossRefPubMedGoogle Scholar
  117. Zhang X, Shi Y, Wang X, Zhang W, Lou K (2010) Isolation, Identification and insecticidal activity of endophyte from Achnatherum inebrians. Wei Sheng Wu Xue Bao 50(4):530–536PubMedGoogle Scholar
  118. Zhang H, Sun X, Xu C (2016) Antimicrobial activity of endophytic fungus Fusarium sp. isolated from medicinal Honey suckles plant. Archiv Biol Sci Belgrade 68(1):25–30Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sardul Singh Sandhu
    • 1
    Email author
  • Suneel Kumar
    • 1
  • Ravindra Prasad Aharwal
    • 1
  • Monika Nozawa
    • 2
  1. 1.Bio-Design Innovation Centre, Rani Durgavati UniversityJabalpur (M.P.)India
  2. 2.Laboratory of GeneticSao Paulo UniversityRibeirao PretoBrazil

Personalised recommendations