Skip to main content

Biology, Diversity and Promising Role of Mycorrhizal Endophytes for Green Technology

  • Chapter
  • First Online:
Endophytes: Biology and Biotechnology

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 15))

Abstract

Arbuscular mycorrhizal fungal symbiosis formed by majority of vascular plants has played a key role in evolution of land plants. An understanding of the manifold advantages of mycorrhizal symbiosis can be helpful in utilizing them as a significant microbe in green technology for sustainable agriculture development which has become an absolute requirement in current environmental scenario. The manuscript discusses the implication of recent results and ideas on symbiosis that are relevant for plant community establishment under natural environmental condition and way the process are interlinked. Mycorrhizal symbiosis also opens a way to a pollution-free environment by playing a magnificent role in nutrient uptake, interacts to affect plant community composition by changing relative species abundance and consequently above-ground productivity, thereby replacing the chemical input and saving the fertilizers subsidiary of government and save the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

Acaulospora laecunosa

At:

Acaulospora tuberculata

Ga:

Glomus aggregatum

Gc:

Glomus constrictum

Gca:

Glomus caledonium

Gf:

Glomus fasciculatum

Gi:

Glomus intraradices

Gia:

Gigaspora albida

Gge:

Glomus gerdemanil

Gic:

Gigaspora candida

Gm:

Glomus mosseae

Gma:

Glomus macrocarpum

Gmi:

Glomus microcarpum

Gco:

Gmomus coronatum

Get:

Glomus etunicatum

Gle:

Glomus leptoticum

Gs:

Glomus species

Gci:

Gigaspora calaspora

Gg:

Gigaspora gigantea

Gsp:

Gigaspora spp.

Sn:

Sclerocystis nigra

Sc:

Sclerocystis spp.

References

  • Abbott LK, Gazey C (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159:69–78

    Article  Google Scholar 

  • Abbott LK, Robson AD (1982) Infectivity of vesicular-arbuscular mycorrhizal fungi in agricultural soils. Aust J Agric Res 33:1049–1959

    Article  Google Scholar 

  • Abbott LK, RobsonAD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99:245–255

    Google Scholar 

  • Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveriabassiana (Balsamo)Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol 96:34–42

    Article  PubMed  Google Scholar 

  • Allen EB Chambers JC, Connor KE, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alpine Res 19:11–22

    Article  Google Scholar 

  • Arul A, Nelson R (2016) Diversity of arbuscular mycorrhizal fungi in the cement dust polluted sites of Ariyalur District, Tamil Nadu. Int J Adv Res Biol Sci 3(1):215–219

    CAS  Google Scholar 

  • Azcon R Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685

    Article  Google Scholar 

  • Baltruschat H, Dehne HW (1988) The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystem, manure in continuous monoculture and crop rotation on the inoculum potential of winter wheat. Plant Soil 107:279–284

    Article  Google Scholar 

  • Barbi E, Siniscalco C (2000) Vegetation dynamics and arbuscular mycorrhiza in oldfield successions of the western Italian Alps. Mycorrhiza 10:63–72

    Article  Google Scholar 

  • Barea JM (2000) Rhizosphere and mycorrhiza of field crops. Biologic Res Manag pp. 81–92

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aquilar C (2002a) Mycorrhizosphere interaction to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barea M, Toro MO, Orozco E, Campos R, Azcón A (2002b) The application of isotopic 32P and 15N dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577. doi:10.1126/science.1222289

    Article  CAS  PubMed  Google Scholar 

  • Berta G, Gianinazzi-Pearson V, Gay G, Torri G (1988) Morphogenetic effects of endomycorrhizal formation on the root system of Calluna vulgaris (L.) Hull. Symbiosis 5:33–44

    CAS  Google Scholar 

  • Bethlenfalvay Gabor J (1992) Mycorrhiza and crop productivity. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA/CSSA/SSSA, Madison, WI, pp 1–27

    Google Scholar 

  • Bethlenfalvay GJ, Cantrell IC, Mihara KL, Schreiner RP (1999) Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol Fertil Soil 28:356–363

    Article  Google Scholar 

  • Bhadraiah B, Kankadurga VV, Ramarao P, Manoharachary C (1999) Effect of VAM fungi and rock phosphate on phosphatase activities in Terminalia arjuna. Natl Conf Mycorr Section 3 (Poster): Physiol Biochem 5–7 March 1999

    Google Scholar 

  • Birch CPD (1988) The effects and implications of disturbance of mycorrhizal mycelial systems. Proc Royal Soc Edinburgh 94B:13–24

    Google Scholar 

  • Bolan NS (1991) A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987) Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410

    Article  CAS  Google Scholar 

  • Bougher NL (1995) Diversity of ectomycorrhizal fungi associated with eucalyptusinAustralia. In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorr Res Forest Asia. ACIAR Proc No. 62, Canberra, pp 8–15

    Google Scholar 

  • Bowen GD (1973) Mycorrhizae Symbiosis. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae – their ecology and physiology. Academic Press, London, pp 151–205

    Google Scholar 

  • Brazanti MB, Rocca E, Pisi E (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109

    Article  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: MacFayden AM, Begon Fitter AH (eds) Advances in ecological research. Academic Press, London, pp 171–133

    Google Scholar 

  • Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal andendophytic fungi. In: Schulz B, Boyle C, Seiber TN (eds) Microbial root endophyts, vol 9. Springer, Soil Biol, Berlin, pp 281–298

    Chapter  Google Scholar 

  • Brundrett MC, Kendrick B (1987) The relationship between the ash bolete (Boletinellusmerulioides) and an aphid parasitic on ash tree roots. Symbiosis 3:315–319

    Google Scholar 

  • Bucking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phyto1 65:899–911

    Google Scholar 

  • Chandreshekara CP, Patil VC, Sreenivasa MN (1995) VA-mycorrhiza mediated P effect on growth and yield of sunflower (Helianthus annus L.) at different P levels. Plant Soil 176:325–328

    Article  Google Scholar 

  • Claridge AW, May TW (1994) Mycophagy among Australian mammals. Aust J Ecol 19:251–275

    Article  Google Scholar 

  • Claridge AW, TrappeJM Cork SJ, Claridge DL (1999) Mycophagy by small mammals in the coniferous forests of North America: nutritional value of sporocarps of Rhizopogonvinicolor, a common hypogenous fungus. J Compl Physiol Biol 169:172–178

    Article  CAS  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Article  Google Scholar 

  • Dehne WH (1986) Influence of VA mycorrhizae on host plant physiology. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiology and genetical aspects of Mycorrhizae. INRA, Paris, pp 431–435

    Google Scholar 

  • Dieffenbach A, Matzner E (2000) In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Piceaabies [L.]Kars trees. Plant Soil 222:149–161

    Article  CAS  Google Scholar 

  • Diop TA, Becard G, Piche Y (1990) Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri-T-DNA transformed roots of carrot. Symbiosis 12:249–259

    Google Scholar 

  • Dodd JC, Dougall TA, Clapp JP, Jeffriues P (2002) The role a species richness of AMF in plant community establishment the Eurotunnel site of special scientific interest, Samphire Hoe Kent, UK. Biodivers Conserv 11:39–58

    Article  Google Scholar 

  • Douds DD, Nagahashi G (2000) Signalling and recognition events prior to colonization of roots by arbuscular mycorrhizal fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, Minnesota, pp 11–18

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1989) The time course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 111:693–698

    Article  Google Scholar 

  • Duddridge JA (1987) Specificity and recognition in ectomycorrhizal associations. In: Pegg GF, Abres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 25–44

    Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of maize. New Phytol 114:65–71

    Article  Google Scholar 

  • Ezawa T, Yoshida T (1994) Acid phosphatase specific to arbuscular mycorrhizal infection in marigold and possible role in symbiosis. Soil Sci Plant Nutr 40(4):655–665

    Google Scholar 

  • Farquhar ML, Peterson RL (1991) Later events in suppression of Fusarium root rot of red pine seedlings by the ectomycorrhizal fungus Paxillusinvolutus. Can J Bot 69:1372–1383

    Article  Google Scholar 

  • Finlay RD, EK H, Odham G, Soderstrom B (1988) Mycelial uptake translocation and assimilation of nitrogen from 15 N-labelled ammonium by Pinussylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:56–66

    Google Scholar 

  • Finlay RD, Read DJ (1986) Hyphal mats. New Phyto 40:276–279

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature (London) 307:53–56

    Article  CAS  Google Scholar 

  • Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot-revue Canadienne de batanique 73:1301–1309

    Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems IV. Transfer of nutrients in inter- and intra-specific combinations of host plants. New Phytol 102:103–111

    Article  Google Scholar 

  • Fries LL, Pacovsky M, Safir RS, Kaminski GR (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plant 103(2):162–171

    Article  CAS  Google Scholar 

  • Gardner JH, Malajczuk N (1988) Recolonisation of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. Forest Ecol Manag 24:27–42

    Article  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscules-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  CAS  PubMed  Google Scholar 

  • Gautam SP, Prasad K (2001) VA mycorrhiza—importance and biotechnological application. In: Maheshwari DK, Dube RC (eds) Innovative approaches in microbiology. Bishon Singh Mahendra Pal Singh, Dehradun, India, pp 83–114

    Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectmycorrhizal Hebeloma species: inter- and interspecific variability in homo- and dikaryotic mycelia. Appl Microbial Biotechnol 26:141–146

    Article  CAS  Google Scholar 

  • George E, Romheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Monthey JA, Crowely DE, Luster DG (eds) Biochemistry of metal micronutrient in the rhizosphere. Boca Raton FL, CRC Press, pp 93–109

    Google Scholar 

  • George E, Gorgus E, Schmeisser A, Marschner H (1996) A method to measure nutrient uptake from soil by mycorrhizal hyphae. In: Azcon A, Beare JM (eds) Mycorrhizas in Integrated System from Genes to plant Development. Luxembourg, European Community

    Google Scholar 

  • Gianinazzi S, Gianinazzi- Pearson V (1986) Symbiosis 2:139–149

    Google Scholar 

  • Gianinazzi-Pearson V (1984) Host-fungus specificity, recognition and compatibility in mycorrhizae. In: Verma DPS, Hohn T (eds) Genes involved microbe plant interaction. Springer, New York, pp 225–249

    Chapter  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1989) Cellular and genetic aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genoine 31:336–341

    Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In-vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Giovannetti M, Hepper CM (1985) Vesicular-arbuscular mycorrhizal infection in Hedysarum coronarium and Onobrychisviciae folia: host-endophyte specificity. Soil Biol Biochem 17:899–900

    Article  Google Scholar 

  • Giovannetti M, Schubert A, Cravero MC, Salutini L (1988) Spore production by the vesicular-arbuscular mycorrhizal fungus Glomus monosporum as related to host species, root colonization and plant growth enhancement. Biol Fertil Soils 6:120–124

    Article  Google Scholar 

  • Graham JH, Linderman RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyercitrange. New Phytol 91:183–189

    Article  Google Scholar 

  • Gray BD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol 130(3):411–417

    Article  Google Scholar 

  • Gueye M, Diem HG, Dommergues YR (1987) Variation in N2 fixation, N and P contents of mycorrhizal Vigna unquiculatain relation to the progressive development of extra-radical hyphae of Glomus mosseae. MIRCEN J 3:75–86

    Article  Google Scholar 

  • Hall JL, Williams LE (2000) Assimilate transport and partitioning in fungal biotrophic interactions. Aust J Plant Physiol 27:549–560

    CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF (1976) Distribution of ectomycorrhizae in a mature douglas-fir/larch soil in western Montana. Forest Sci 22:393–398

    Google Scholar 

  • Harwani, D, Choudhary P, Dhaker S, Prasad K, Mahna SK (2009) Tripartite symbiotic association: legume-rhizobia-mycorrhiza—a review. In: Maheshwari DK, Dube RC (eds) Biotechnology for agricultural microorganisms–An Agro-Industry Approach, I.K. International Pvt. Ltd. New Delhi, India, pp 406–435

    Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Care species of high-alpine communities. Oecologia (Berl) 53:352–354

    Article  CAS  Google Scholar 

  • Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Article  Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfers of nitrogen between pasture plants infected with vesicular- arbuscular mycorrhizal fungi. New Phytol 108:417–423

    Article  Google Scholar 

  • Howeler RH, Sieverding E, Saif S (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249–283

    Article  Google Scholar 

  • Jasper DA (1994) Bioremediation of agricultural and forestry soils with symbiotic micro-organisms. Aust J Soil Res 32:345–348

    Article  Google Scholar 

  • Jasper DA, Robson AD, Abbott LK (1987) The effect of surface mining on the infectivity of vesicular arbuscular mycorrhizal fungi. Aust J Bot 35:642–652

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Tumau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soil 37:1–16

    Google Scholar 

  • Johnson PN (1977) Mycorrhizal Endogonaceae in a New Zealand forest. New Phytol 78:161–170

    Article  Google Scholar 

  • Johnson CN (1994) Mycophagy and spore dispersal by a rat-kangaroo: consumption of ectomycorrhizal taxa in relation to their abundance. Funct Ecol 8:464–468

    Article  Google Scholar 

  • Jones K, Hendrix JW (1987) Inhibition of root extension in tobacco by the mycorrhizal fungus Glomus macrocarpum and its prevention by benomyl. Soil Biol Biochem 19:297–299

    Article  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and production of extrametrical hyphae by two types of willow ectomycorrhizae at different soil phosphorus levels. New Phytol 115:259–267

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kendrick B (1985) The Fifth Kingdom. Mycologue Publications. Waterloo, Ontario

    Google Scholar 

  • Kieliszewska-Rokicka B (1990) Acid phosphatase activity in roots of Scots pine (Pinussylvestris l) seedlings fertilized with different nitrogen sources. Agric Ecosyst Environ 17(1–4):229–234

    Article  Google Scholar 

  • Killham K (1985) Vesicular-arbuscular mycorrhizal mediation of trace and minor element uptake in perennial grasses: relation to livestock herbage. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soils: plants microbes and animals. Blackwell, Oxford, pp 225–232

    Google Scholar 

  • Klironomos JN, Hart MM (2001) Food-web dynamics. Animal nitrogen swaps for plant carbon. Nature 410:651–652. doi:10.1038/35070643

    Article  CAS  PubMed  Google Scholar 

  • Kotter MM, Farentinos RC (1984) Tassel-eared squirrels as spore dispersal agents of hypogeous mycorrhizal fungi. J Mammal 65:684–687

    Article  Google Scholar 

  • Krishna KR, Shetty KG, Dart PJ, Andrews DJ (1985) Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil 86:113–125

    Article  Google Scholar 

  • Lackie SM, Bowley SR, Peterson RL (1988) Comparison of colonization among half-sib families of Medicago sativa L. by Glomus versiforme (Daniels and Trappe) Berch. New Phytol 108:477–482

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lynch JM, Bragg E (1985a) Microorganisms and soil aggregate stability. Advances in soil science, vol 2. Springer, New York, pp 133–171

    Chapter  Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. In: Advances in Soil Science Vol2, Springer-Verlag, New York, pp. 133-171

    Google Scholar 

  • Majdi H, Damm E, Nylund J (2001) Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol 150:195–202

    Article  Google Scholar 

  • Malajczuk N, Trappe JM, Molina R (1987) Interrelationships among some ectomycorrhizal trees, hypogenous fungi and small mammals: Western Australian and north western American parallels. Aust J Ecol 12:53–55

    Article  Google Scholar 

  • Manjunath A, Habte M (1988) Development of vesicular arbuscular mycorrhizal infection and the uptake of immobile mycorrhizas in forestry and agriculture. ACIAR Monograph 32, Australian Centre for International Agricultural Research, Canberra, pp 374

    Google Scholar 

  • Manjunath A, Habte M (1988b) The development of vesicular arbuscular mycorrhizal infection and the uptake of immobile nutrients in Leucaenaleucocephala. Plant Soil 106:97–103

    Article  Google Scholar 

  • Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89(1):58–71

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Mason PA, Last FT, Wilson J, Deacon JW, Fleming LV, Fox FM (1987) Fruiting and successions of ectomycorrhizal fungi. In: Pegg GF, Ayes PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 253–268

    Google Scholar 

  • McGonigle TP (1998) A numerical analysis of published field trials with vesicular arbuscular mycorrhizal fungi. Functional Ecol 2:473–478

    Article  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122

    Article  Google Scholar 

  • Meghvansi MK, Prasad K, Mahna SK (2010) Symbiotic potential, competitiveness and compatibility of indigenous Bradyrhizobium japonicum isolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India. Saudi J Biologic Sci 17:303–310

    Article  Google Scholar 

  • Menge JA (1983) Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. Can J Bot 61:1015–1024

    Article  Google Scholar 

  • Menge JA, Grand LF, Haine LW (1977) The effect of fertilization on growth and mycorrhiza numbers in 11-year-old loblolly pine plantations. Forest Sci 23:37–44

    Google Scholar 

  • Miller OK Jr (1982) Mycorrhizal fungi and fungal biomass in subalpine tundra at Eagle Summit, Alaska. Holarctic Ecol 5:125–134

    Google Scholar 

  • Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ, Linderman GR (eds) Mycorrhizae in sustainable agriculture. Agronomy Society of America special Publication No. 54, Madison, WI, pp 29–44

    Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Sci 28:423–458

    Google Scholar 

  • Morton JB (1990) Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): Their role in macro and micro evolutionary processes. Mycotaxon 37:493–515

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes); a new order, Glomales, two new suborders, Glomineae and Gigasporineae and two new families, Acaulosporaceae and Gigasporaceae, with anemendation of Glomacea. Mycotaxonomy 37:471–491

    Google Scholar 

  • Mosse B (1959) Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Truns Br Mycol Soc 42:439–448

    Article  Google Scholar 

  • Mosse B (1978) Mycorrhiza and plant growth. In: Freysen AHJ, Woldendorp JW (eds) Structure and functioning of plant populations. North Holland Publishing Co, Amsterdam, pp 269–289

    Google Scholar 

  • Nagahashi G, Douds DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408

    Article  CAS  Google Scholar 

  • Nair MG, Safir GR, Siquueira JO (1991) Isolation and Identification of vesicular Arbuscular mycorrhizal- stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Newton AC, Pigott CD (1991) Mineral nutrition and mycorrhizal infection of seedling oak and birch. II. Effect of fertilizers on growth, nutrient uptake and ectomycorrhizal infection. New Phytol 117:45–52

    Article  CAS  Google Scholar 

  • Nicolson TH (1959) Mycorrhiza in the Gramineae I. vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Myco Soc 42:421–438

    Article  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Odum EP (1984) Properties of agro ecosystem. In: Lowrance R, Stinnerand BR, House GJ (eds) Agriculteral ecosystems. J Wiley and Sons, New York, pp 5–11

    Google Scholar 

  • Oehl F, Wiemken A, Sieverding E (2002) Glomus caesaris, a new arbuscular mycorrhizal fungus from the Kaiserstuhl in Germany. Mycotaxonomy 84:379–385

    Google Scholar 

  • Oehl F, Wiemken A, Sieverding E (2003) Glomus spinutiferum: A new ornamental species in the Glomales. Mycotaxonomy 86:157–162

    Google Scholar 

  • Pacovsky RS (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus-fertilized soybeans. Plant Soil 95:379–388

    Article  CAS  Google Scholar 

  • Pellet D, Sieverding E (1986) Preferential multiplication of fungal species of the Endogonanceae in the field Demonstrated with weeds. In: Gianinazzi S (ed) Gianinazzi-Pearson V. Physiol Genet Aspec Mycorrhizae INRA, Paris, pp 555–557

    Google Scholar 

  • Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309

    Article  CAS  Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres and reforestation: current knowledge and research needs. Can J For Res 17:929–940

    Article  Google Scholar 

  • Potty VP, Indira P (1990) Influence of vesicular arbuscular mycorrlrizae on the photosynthesis and photorespiration of sweet potato (Ipomea batata). In: Jalali BL, Chand H (eds) Curr Trend Mycorrhizal Res. Haryana Agricultural University Press, Hisar, India, p 73

    Google Scholar 

  • Prasad K (1993) Ecological factors affecting vesicular arbuscular mycorrhiza infection in sugarcane. Ph.D Thesis, B.R. Ambedkar Bihar University, Muzaffarpur, India

    Google Scholar 

  • Prasad K (1995) Physico chemical characteristics of soil in relation to vesicular arbuscular mycorrhizal (Glomus fasciculatum) colonization in Saccharum officinarum L. J Phytol Res 8(2):201–205

    Google Scholar 

  • Prasad K (1998) Effect of Glomus fasciculatum VAM form and Rhizobium on biomass yield and nutrient uptake of Dalbergia sissoo L. J Trop Forestry 14(111):143–148

    Google Scholar 

  • Prasad K (2000a) Growth responses of Acacia nilotica (L.) Del. inoculated with Rhizobium and Glomus fasciculatum VAM fungi. J Trop Forestry 16(1):22–27

    Google Scholar 

  • Prasad K (2000b) Impact of arbuscular mycorrhizal (AM) fungi on biomass yield of Terminalia arjuna under field conditions. Vislesana, Res J (Sci) 7(2):73–79

    Google Scholar 

  • Prasad K (2000c) Occurrence of vesicular arbuscular mycorrhizal fungi in some cultivated crop plants. In: Maheshwari DK, Dube RC, Prasad G, Navneet (eds) Microbes: agriculture, industry and environment. Bishen Singh Mahendra Pal Singh Publishers, Dehra Dun, pp 65–69

    Google Scholar 

  • Prasad K (2002) Effect of arbuscular mycorrhizae on biomass yield, uptake and translocation of nitrogen, phosphorus and potassium in Azadirachta indica L. In: Purohit DK, Reedy SR, Singaracharya MA, Girisham S (eds) Manoharachary C. Front Microbial Biotechnol Plant Pathol, Scientific Publishers (India) Jodhpur, pp 187–191

    Google Scholar 

  • Prasad K (2005) Arbuscular mycorrhizal fungal occurrence in non-cultivated disturbed and non-fertile land of Bettiahraj, Bettiah, Bihar. Mycorrhiza News 16(4):12–14

    Google Scholar 

  • Prasad K (2006a) Impact of arbuscular mycorrhizal fungus (Glomus fasciculatum) and phosphate solubilizing bacterium (Pseudomonas striata) on growth and nutrient status of Azadirachta indica L. Mycorrhiza News 18(2):10–12

    Google Scholar 

  • Prasad K (2006b) Influence of indigenous VAM fungus (Glomus fasciculatum) and Rhizobium on growth, nutrient uptake and nodulation in Acacia nilotica. In: Prakash A, Mehrotra VS (eds) Mycorrhiza. Scientific Publishers (India), Jodhpur, pp 139–144

    Google Scholar 

  • Prasad K (2007) Improvement in bioavailability of nutrition and biomass production to Azadirachta indica (Neem) by arbuscular mycorrhizal symbiosis. J Basic Applied Mycology 6 (I &II):96–101

    Google Scholar 

  • Prasad K (2010a) Ectomycorrhiza symbiosis: possibilities and prospects. In: Rao MK, Kovices G (eds) Progress in mycology. Scientific Publisher, Jodhpur, India, pp 290–308

    Google Scholar 

  • Prasad K (2010b) Responses of dual inoculation of arbuscular mycorrhizal fungi on the biomass production, phosphate, roots and shoots phenol concentrations of Terminalia arjuna under field conditions. Mycorrhiza News 22(2):13–17

    Google Scholar 

  • Prasad K (2011a) Effect of Glomus intraradices AM fungi on the shoot dry matter, seed dry yield, and nitrogen and phosphorus uptake of soybean (Glycine max (L.) Merrill) inoculated with cultivar-specific Bradyrhizobium japonicum. Mycorrhiza News 23(3):13–18

    Google Scholar 

  • Prasad K (2011b) Interaction between arbuscular mycorrhizal fungus (Glomus fasciculatum) and rhizospheric fungi in Saccharum officinarum L. Amravati Univ Res J 5:53–65

    Google Scholar 

  • Prasad K (2013) Arbuscular mycorrhizal fungus plays a major role in agriculture and natural ecosystems to improve production in sustainable manner In: Jamaluddin and Singh AK (eds) Microbes and sustainable plant productivity. Scientific Publication (India) Jodhpur, pp 113–138

    Google Scholar 

  • Prasad K (2015) Biofertilizers: a new dimension for agriculture and environmental development to improve production in sustainable manner. J Basic Applied Mycol 11(1&II):5–13

    Google Scholar 

  • Prasad K, Bilgrami RS (2004) Impact of Glomus fasciculatum (AMF) and phosphates on biomass yield of Saccharum officinarum L. J Basic Applied Mycol 3(I&II):108–110

    Google Scholar 

  • Prasad K, Bilgrami RS (2005) Interaction between arbuscular Mycorrhizal fungus (Glomus fasciculatum) and rhizospheric fungi in Saccharum officinarum L. Special, vol. of Rhizosphere 2004. J Soil Sci Plant Nutr 56:1234–1239

    Google Scholar 

  • Prasad K, Bilgrami RS (2006) Impact of Glomus fasciculatum and potash on biomass yield and sucrose contents of Saccharum officinarum L. In: Prakash A, Mehrotra VS (eds) Mycorrhiza. Scientific Publishers (India), Jodhpur, pp 45–50

    Google Scholar 

  • Prasad K, Bilgrami RS (2007) Effect of Glomus fasciculatum AM fungus and nitrogen’s on biomass yield, chlorophyll, juice and sucrose contents of Saccharun officinarum L. In: Ram RC, Sinha A (eds) Modern trends in microbial diversity. Daya Publishing House, New Delhi, India, pp 224–233

    Google Scholar 

  • Prasad K, Deploey JJ (1999) Incidence of arbuscular mycorrhizae and their effect on certain species of trees. JPA Acad Sci 73(3):117–122

    Google Scholar 

  • Prasad K, Gautam SP (2000) Arbuscular mycorrhizal spore types present in the root zone of Dalbergia sissoo L. Vislesana, Res J (Sci) 7(2):013–018

    Google Scholar 

  • Prasad K, Gautam SP (2005) Effect of inoculation of arbuscular mycorrhizal fungus (Glomus macrocarpum) on the growth and nutrients uptake of Dendrocalamus strictus (Roxb.) Ness under field conditions. Anusandhan 1:53–62

    Google Scholar 

  • Prasad K, Kaushik S (2004) Ecology, physiology, biochemistry and taxonomy of arbuscular mycorrhizal fungi. In: Gautam SP, Bansal YK, Pandey AK (eds) Biological diversity: current trends, Prof. R.C. Rajak Festschrift volume. Shree Publication & Distributors, New Delhi, pp 134–141

    Google Scholar 

  • Prasad K, Meghvansi MK (2005) Interaction between indigenous Glomus fasciculatum (AM fungus) and Rhizobium and their stimulatory effect on growth, nutrient uptake and nodulation in Acacia nilotica (L.) Del. Flora and Fauna 11(1):51–56

    Google Scholar 

  • Prasad K, Pandey AK (2012) Mycorrhizal symbiosis: A new dimension for agriculture and environmental development to improve production in sustainable manner. In: Bagyaraj DJ, Tilak KVBR, Kehri HK (eds) Microbial diversity and function, New Delhi. New India Publishing Agency, New Delhi, India, pp 389–402

    Google Scholar 

  • Prasad K, Rajak RC (1999) Recent advances in mycorrhizal taxonomy: morphological and molecular criteria. In: Rajak RC (ed) Microbial biotechnology for sustainable development and productivity. Prof. SK. Hasija Festschrift. Scientific Publishers (India), Jodhpur, pp 62–72

    Google Scholar 

  • Prasad K, Rajak RC (2000) Biotechnological application of mycorrhizae in reclamation of mined dumps. In: Rai MK, Varma A, Rajak RC (eds) Integrated management of plant resources. Scientific Publishers (India), Jodhpur, pp 283–292

    Google Scholar 

  • Prasad K, Rajak RC (2001) Microbes and wasteland management: Challenge ahead. In: Roy AK, Varma SK (eds) Wasteland management and environment. Scientific Publishers (India), Jodhpur, pp 27–39

    Google Scholar 

  • Prasad K, Meghvansi MK, Harwani D, Mahna SK, Werner D (2005a) Synergistic effect of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on growth, yield and nutrient status of soybean [Glycine max (L.) Merrill] Anusandhan 1(1):13–19

    Google Scholar 

  • Prasad K, Meghvansi MK, Choudhary KK (2005b) Arbuscular mycorrhizal symbiosis: an overview of research and extension needs. In: Tiwari M, Sati SC (eds) The mycorrhizae: diversity, ecology, and application. Daya Publishing House, New Delhi, pp 87–101

    Google Scholar 

  • Prasad K, Pandey AK, Rajak RC (2005c) Ectomycorrhizal diversity and its role in the productivity of forest plants. In: Mukherjee KG, Tilak KVBR, Reddy SM, Gangwane LV, Prakash P, Kunwar IK (eds) Frontiers in plant sciences. I. K. International Pvt Ltd, New Delhi, India, pp 617–642

    Google Scholar 

  • Prasad K, Meghvansi MK, Harwani D, Mahna SK, Werner D (2006a) Distribution of arbuscular mycorrhizal fungi in soybean (Glycine max (L.) Merrill) rhizosphere. Mycorrhiza News 17(4):14–17

    Google Scholar 

  • Prasad K, Kaushik S, Rajak RC (2006b) Performance of arbuscular mycorrhizal biofertilizers and their role in sustainable development and productivity. In: Prakash A, Mehrotra VS (eds) Mycorrhiza. Scientific Publication (India), Jodhpur, pp 281–289

    Google Scholar 

  • Prasad K, Meghvansi MK, Khan AA (2011) Incidence of arbuscular mycorrhizal fungi (AMF) in tree species in arid zones of Ajmer region of Rajasthan. Mycorrhiza News 22(4):12–15

    Google Scholar 

  • Rafiq Lone, Shuab R, Malla NA, Gautam AK, Koul KK (2016) Beneficial effects of arbuscular mycorrhizal fungi on underground modified stem propagule plants. J New Biologic Rep 5(1):41–51

    Google Scholar 

  • Read DJ, Birch CPD (1988) The effects and implications of disturbance of mycorrhizal mycelial systems. Proc Royal Soc Edinburgh 94B:13–24

    Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Read DL, Leake JR, Langdale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 181–204

    Google Scholar 

  • Reeves BF, Wagner D, Moorman T, Keil J (1979) The role of endo-mycorrhizae in revegetation practices in the semi-arid west. I. A comparison of the incidence of mycorrhizae in severely disturbed vs. natural environments. Am J Bot 66:6–13

    Article  Google Scholar 

  • Rilling M (2004) Arbuscular mycorrhizae, glomalin and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rilling MP, Ramsey S, Morris Paul E (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  Google Scholar 

  • Ritz K, Newman EI (1986) Nutrient transport between ryegrass plants differing in nutrient status. Oecologia (Berl) 70:128–131

    Article  CAS  Google Scholar 

  • Rose SL (1988) Above and below ground community development in a marine sand dune ecosystem. Plant Soil 109:215–226

    Article  Google Scholar 

  • Rothwell FM (1984) Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of Lespedex. Plant Soil 80:99–104

    Article  Google Scholar 

  • Rubio R, Moraga E, Borie F (1990) Acid phosphatase activity and vesicular arbuscular mycorrhizal infection associated with roots of 4 wheat cultivars. J Plant Nutr 13(5):585–598

    Article  CAS  Google Scholar 

  • Rupp LA, Mudge KW, Negm FB (1989) Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings. Can J Bot 67:477–482

    Article  CAS  Google Scholar 

  • Sainz MJ, Trasar MC, Arines, Gil-Stores F (1987) Phosphatase activity in three acid soils as affected by VAM symbiosis and soil steam-sterilization. In: Proceedings of Seventh North American Conference on Mycorrhiza 3–8 May 1987, Gainesville, Florida

    Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect- pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107

    Article  PubMed  Google Scholar 

  • Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhizae 15:539–545

    Article  CAS  Google Scholar 

  • Scheltema MA, Abbott LK, Robson AD (1985) Seasonal variation in the infectivity of VA mycorrhizal fungi in annual pastures in a mediterranean environment. Aust J Agric Res 38:70–715

    Google Scholar 

  • Sharma AK, Srivastava PC, Johri BN (1990) Influence of Glomus macrocarpum on growth and physiology of Sesbania aculenta. In: Bagyaraj DJ, Manjunath A (eds) Mycorrhiza symbiosis and plant growth. Proc Sec Nat Conf on Mycorrhizae Nov. 21–23. 1990. Reproduction/Graphis Type Setters, Bangalore, and India, pp 86–87

    Google Scholar 

  • Sievarding E, Glavez A (1988) Performance of different cassava clones with various VA mycorrhizal Fungi. Angew Botanik 62:273–282

    Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betulapa pyrifera and Pseudotsuga menziesii. New Phytol 136:327–340

    Article  Google Scholar 

  • Simpson D, Daft MJ (1990a) Spore production and mycorrhizal development in various tropical crop hosts infected with Glomus clarum. Plant Soil 121:171–178

    Article  Google Scholar 

  • Simpson D, Daft MJ (1990b) Interactions between water-stress and different mycorrhizal inoculum on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186

    Article  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann Rev Plant Physiol Plant Mol Biol 39:221–244

    Article  CAS  Google Scholar 

  • St John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493

    Article  Google Scholar 

  • Struble JE, Skipper HD (1988) Vesicular-arbuscular mycorrhizal fungal spore production as influenced by plant species. Plant Soil 109:277–280

    Article  Google Scholar 

  • Thomas GV, Ghai SK (1987) Genotype dependent variation in vesicular arbuscular mycorrhizal colonisation of coconut seedlings. Proc Indian Acad Sci (Plant Sci) 97:289–294

    Google Scholar 

  • Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867

    Article  CAS  Google Scholar 

  • Tinker PB, Gilden A (1983) Mycorrhizal fungi and ion uptake. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients, uptake and utilization by plants. Academic Press, NY, pp 21–32

    Chapter  Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilization of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441

    Article  Google Scholar 

  • Toth R, Toth D, Stark D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonisation in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044

    Article  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the Angiosperms from an evolutionary standpoint. In: Safir GR (ed) Eco physiology of VA mycorrhizal plants. CRC Press, Boca Raton, Florida, pp 5–25

    Google Scholar 

  • Usuki F, Narisawa KA (2007) Mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden MG, Klironimos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998a) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Van der Heijden MG, Boller T, Wiemken A, Sanders IR (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Vogt KA, Grier CC, Meir CE, Edmonds RL (1982) Mycorrhizal role in net production and nutrient cycling in Abiesamabilis ecosystems in western Washington. Ecology 63:370–380

    Article  Google Scholar 

  • Walker C, Biggin P, Jardine DC (1986) Difference in mycorrhizal status among clones of Sitka spruce. Forest Ecol Manag 14:275–283

    Article  Google Scholar 

  • Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354

    Article  Google Scholar 

  • Went FW, Stark N (1968) The biological and mechanical role of soil fungi. Proc Natl Acad Sci 60:497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SF (2005) Roots and soil management: interactions between roots and the soil. In: Zobel RW, Wright SF (eds) Management of arbuscular mycorrhizal fungi. American Society of Agronomy, USA, pp 183–197

    Google Scholar 

  • Wright SF, Millner PD (1994) Dynamic processes of vesicular-arbuscular. Mycorrhizae: a mycorrhizasystem within agro ecosystem. In: Hatfield JL, Stevart BA (eds) Soil biology: effects on soil quality. Lewis Publishers, Boca Raton, pp 29–57

    Google Scholar 

  • Wu B, Nara K, Hogetsu T (2001) Can 14C-labelled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146

    Article  CAS  Google Scholar 

  • Zubek S, Majewska ML, BÅ‚aszkowski J, Stefanowicz AM, Nobis M, Kapusta P (2016) Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol Fertil Soils 52:879–89893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, K. (2017). Biology, Diversity and Promising Role of Mycorrhizal Endophytes for Green Technology. In: Maheshwari, D. (eds) Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_11

Download citation

Publish with us

Policies and ethics