Advertisement

Biology, Diversity and Promising Role of Mycorrhizal Endophytes for Green Technology

  • Kamal PrasadEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)

Abstract

Arbuscular mycorrhizal fungal symbiosis formed by majority of vascular plants has played a key role in evolution of land plants. An understanding of the manifold advantages of mycorrhizal symbiosis can be helpful in utilizing them as a significant microbe in green technology for sustainable agriculture development which has become an absolute requirement in current environmental scenario. The manuscript discusses the implication of recent results and ideas on symbiosis that are relevant for plant community establishment under natural environmental condition and way the process are interlinked. Mycorrhizal symbiosis also opens a way to a pollution-free environment by playing a magnificent role in nutrient uptake, interacts to affect plant community composition by changing relative species abundance and consequently above-ground productivity, thereby replacing the chemical input and saving the fertilizers subsidiary of government and save the environment.

Keywords

Biology Diversity Mycorrhizae Green technology Environment 

Abbreviation

AL

Acaulospora laecunosa

At

Acaulospora tuberculata

Ga

Glomus aggregatum

Gc

Glomus constrictum

Gca

Glomus caledonium

Gf

Glomus fasciculatum

Gi

Glomus intraradices

Gia

Gigaspora albida

Gge

Glomus gerdemanil

Gic

Gigaspora candida

Gm

Glomus mosseae

Gma

Glomus macrocarpum

Gmi

Glomus microcarpum

Gco

Gmomus coronatum

Get

Glomus etunicatum

Gle

Glomus leptoticum

Gs

Glomus species

Gci

Gigaspora calaspora

Gg

Gigaspora gigantea

Gsp

Gigaspora spp.

Sn

Sclerocystis nigra

Sc

Sclerocystis spp.

References

  1. Abbott LK, Gazey C (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159:69–78CrossRefGoogle Scholar
  2. Abbott LK, Robson AD (1982) Infectivity of vesicular-arbuscular mycorrhizal fungi in agricultural soils. Aust J Agric Res 33:1049–1959CrossRefGoogle Scholar
  3. Abbott LK, RobsonAD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99:245–255Google Scholar
  4. Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveriabassiana (Balsamo)Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol 96:34–42PubMedCrossRefGoogle Scholar
  5. Allen EB Chambers JC, Connor KE, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alpine Res 19:11–22CrossRefGoogle Scholar
  6. Arul A, Nelson R (2016) Diversity of arbuscular mycorrhizal fungi in the cement dust polluted sites of Ariyalur District, Tamil Nadu. Int J Adv Res Biol Sci 3(1):215–219Google Scholar
  7. Azcon R Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685CrossRefGoogle Scholar
  8. Baltruschat H, Dehne HW (1988) The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystem, manure in continuous monoculture and crop rotation on the inoculum potential of winter wheat. Plant Soil 107:279–284CrossRefGoogle Scholar
  9. Barbi E, Siniscalco C (2000) Vegetation dynamics and arbuscular mycorrhiza in oldfield successions of the western Italian Alps. Mycorrhiza 10:63–72CrossRefGoogle Scholar
  10. Barea JM (2000) Rhizosphere and mycorrhiza of field crops. Biologic Res Manag pp. 81–92Google Scholar
  11. Barea JM, Azcon R, Azcon-Aquilar C (2002a) Mycorrhizosphere interaction to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefGoogle Scholar
  12. Barea M, Toro MO, Orozco E, Campos R, Azcón A (2002b) The application of isotopic 32P and 15N dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42CrossRefGoogle Scholar
  13. Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577. doi: 10.1126/science.1222289 PubMedCrossRefGoogle Scholar
  14. Berta G, Gianinazzi-Pearson V, Gay G, Torri G (1988) Morphogenetic effects of endomycorrhizal formation on the root system of Calluna vulgaris (L.) Hull. Symbiosis 5:33–44Google Scholar
  15. Bethlenfalvay Gabor J (1992) Mycorrhiza and crop productivity. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA/CSSA/SSSA, Madison, WI, pp 1–27Google Scholar
  16. Bethlenfalvay GJ, Cantrell IC, Mihara KL, Schreiner RP (1999) Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol Fertil Soil 28:356–363CrossRefGoogle Scholar
  17. Bhadraiah B, Kankadurga VV, Ramarao P, Manoharachary C (1999) Effect of VAM fungi and rock phosphate on phosphatase activities in Terminalia arjuna. Natl Conf Mycorr Section 3 (Poster): Physiol Biochem 5–7 March 1999Google Scholar
  18. Birch CPD (1988) The effects and implications of disturbance of mycorrhizal mycelial systems. Proc Royal Soc Edinburgh 94B:13–24Google Scholar
  19. Bolan NS (1991) A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  20. Bolan NS, Robson AD, Barrow NJ (1987) Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410CrossRefGoogle Scholar
  21. Bougher NL (1995) Diversity of ectomycorrhizal fungi associated with eucalyptusinAustralia. In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorr Res Forest Asia. ACIAR Proc No. 62, Canberra, pp 8–15Google Scholar
  22. Bowen GD (1973) Mycorrhizae Symbiosis. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae – their ecology and physiology. Academic Press, London, pp 151–205Google Scholar
  23. Brazanti MB, Rocca E, Pisi E (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109CrossRefGoogle Scholar
  24. Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: MacFayden AM, Begon Fitter AH (eds) Advances in ecological research. Academic Press, London, pp 171–133Google Scholar
  25. Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal andendophytic fungi. In: Schulz B, Boyle C, Seiber TN (eds) Microbial root endophyts, vol 9. Springer, Soil Biol, Berlin, pp 281–298CrossRefGoogle Scholar
  26. Brundrett MC, Kendrick B (1987) The relationship between the ash bolete (Boletinellusmerulioides) and an aphid parasitic on ash tree roots. Symbiosis 3:315–319Google Scholar
  27. Bucking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phyto1 65:899–911Google Scholar
  28. Chandreshekara CP, Patil VC, Sreenivasa MN (1995) VA-mycorrhiza mediated P effect on growth and yield of sunflower (Helianthus annus L.) at different P levels. Plant Soil 176:325–328CrossRefGoogle Scholar
  29. Claridge AW, May TW (1994) Mycophagy among Australian mammals. Aust J Ecol 19:251–275CrossRefGoogle Scholar
  30. Claridge AW, TrappeJM Cork SJ, Claridge DL (1999) Mycophagy by small mammals in the coniferous forests of North America: nutritional value of sporocarps of Rhizopogonvinicolor, a common hypogenous fungus. J Compl Physiol Biol 169:172–178CrossRefGoogle Scholar
  31. Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55CrossRefGoogle Scholar
  32. Dehne WH (1986) Influence of VA mycorrhizae on host plant physiology. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiology and genetical aspects of Mycorrhizae. INRA, Paris, pp 431–435Google Scholar
  33. Dieffenbach A, Matzner E (2000) In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Piceaabies [L.]Kars trees. Plant Soil 222:149–161CrossRefGoogle Scholar
  34. Diop TA, Becard G, Piche Y (1990) Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri-T-DNA transformed roots of carrot. Symbiosis 12:249–259Google Scholar
  35. Dodd JC, Dougall TA, Clapp JP, Jeffriues P (2002) The role a species richness of AMF in plant community establishment the Eurotunnel site of special scientific interest, Samphire Hoe Kent, UK. Biodivers Conserv 11:39–58CrossRefGoogle Scholar
  36. Douds DD, Nagahashi G (2000) Signalling and recognition events prior to colonization of roots by arbuscular mycorrhizal fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, Minnesota, pp 11–18Google Scholar
  37. Duchesne LC, Peterson RL, Ellis BE (1989) The time course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 111:693–698CrossRefGoogle Scholar
  38. Duddridge JA (1987) Specificity and recognition in ectomycorrhizal associations. In: Pegg GF, Abres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 25–44Google Scholar
  39. Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of maize. New Phytol 114:65–71CrossRefGoogle Scholar
  40. Ezawa T, Yoshida T (1994) Acid phosphatase specific to arbuscular mycorrhizal infection in marigold and possible role in symbiosis. Soil Sci Plant Nutr 40(4):655–665Google Scholar
  41. Farquhar ML, Peterson RL (1991) Later events in suppression of Fusarium root rot of red pine seedlings by the ectomycorrhizal fungus Paxillusinvolutus. Can J Bot 69:1372–1383CrossRefGoogle Scholar
  42. Finlay RD, EK H, Odham G, Soderstrom B (1988) Mycelial uptake translocation and assimilation of nitrogen from 15 N-labelled ammonium by Pinussylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:56–66Google Scholar
  43. Finlay RD, Read DJ (1986) Hyphal mats. New Phyto 40:276–279Google Scholar
  44. Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature (London) 307:53–56CrossRefGoogle Scholar
  45. Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot-revue Canadienne de batanique 73:1301–1309Google Scholar
  46. Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems IV. Transfer of nutrients in inter- and intra-specific combinations of host plants. New Phytol 102:103–111CrossRefGoogle Scholar
  47. Fries LL, Pacovsky M, Safir RS, Kaminski GR (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plant 103(2):162–171CrossRefGoogle Scholar
  48. Gardner JH, Malajczuk N (1988) Recolonisation of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. Forest Ecol Manag 24:27–42CrossRefGoogle Scholar
  49. Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscules-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528PubMedCrossRefGoogle Scholar
  50. Gautam SP, Prasad K (2001) VA mycorrhiza—importance and biotechnological application. In: Maheshwari DK, Dube RC (eds) Innovative approaches in microbiology. Bishon Singh Mahendra Pal Singh, Dehradun, India, pp 83–114Google Scholar
  51. Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192CrossRefGoogle Scholar
  52. Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectmycorrhizal Hebeloma species: inter- and interspecific variability in homo- and dikaryotic mycelia. Appl Microbial Biotechnol 26:141–146CrossRefGoogle Scholar
  53. George E, Romheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Monthey JA, Crowely DE, Luster DG (eds) Biochemistry of metal micronutrient in the rhizosphere. Boca Raton FL, CRC Press, pp 93–109Google Scholar
  54. George E, Gorgus E, Schmeisser A, Marschner H (1996) A method to measure nutrient uptake from soil by mycorrhizal hyphae. In: Azcon A, Beare JM (eds) Mycorrhizas in Integrated System from Genes to plant Development. Luxembourg, European CommunityGoogle Scholar
  55. Gianinazzi S, Gianinazzi- Pearson V (1986) Symbiosis 2:139–149Google Scholar
  56. Gianinazzi-Pearson V (1984) Host-fungus specificity, recognition and compatibility in mycorrhizae. In: Verma DPS, Hohn T (eds) Genes involved microbe plant interaction. Springer, New York, pp 225–249CrossRefGoogle Scholar
  57. Gianinazzi-Pearson V, Gianinazzi S (1989) Cellular and genetic aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genoine 31:336–341Google Scholar
  58. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In-vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  59. Giovannetti M, Hepper CM (1985) Vesicular-arbuscular mycorrhizal infection in Hedysarum coronarium and Onobrychisviciae folia: host-endophyte specificity. Soil Biol Biochem 17:899–900CrossRefGoogle Scholar
  60. Giovannetti M, Schubert A, Cravero MC, Salutini L (1988) Spore production by the vesicular-arbuscular mycorrhizal fungus Glomus monosporum as related to host species, root colonization and plant growth enhancement. Biol Fertil Soils 6:120–124CrossRefGoogle Scholar
  61. Graham JH, Linderman RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyercitrange. New Phytol 91:183–189CrossRefGoogle Scholar
  62. Gray BD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol 130(3):411–417CrossRefGoogle Scholar
  63. Gueye M, Diem HG, Dommergues YR (1987) Variation in N2 fixation, N and P contents of mycorrhizal Vigna unquiculatain relation to the progressive development of extra-radical hyphae of Glomus mosseae. MIRCEN J 3:75–86CrossRefGoogle Scholar
  64. Hall JL, Williams LE (2000) Assimilate transport and partitioning in fungal biotrophic interactions. Aust J Plant Physiol 27:549–560Google Scholar
  65. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  66. Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant Soil 189:303–319CrossRefGoogle Scholar
  67. Harvey AE, Larsen MJ, Jurgensen MF (1976) Distribution of ectomycorrhizae in a mature douglas-fir/larch soil in western Montana. Forest Sci 22:393–398Google Scholar
  68. Harwani, D, Choudhary P, Dhaker S, Prasad K, Mahna SK (2009) Tripartite symbiotic association: legume-rhizobia-mycorrhiza—a review. In: Maheshwari DK, Dube RC (eds) Biotechnology for agricultural microorganisms–An Agro-Industry Approach, I.K. International Pvt. Ltd. New Delhi, India, pp 406–435Google Scholar
  69. Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Care species of high-alpine communities. Oecologia (Berl) 53:352–354CrossRefGoogle Scholar
  70. Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963CrossRefGoogle Scholar
  71. Haystead A, Malajczuk N, Grove TS (1988) Underground transfers of nitrogen between pasture plants infected with vesicular- arbuscular mycorrhizal fungi. New Phytol 108:417–423CrossRefGoogle Scholar
  72. Howeler RH, Sieverding E, Saif S (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249–283CrossRefGoogle Scholar
  73. Jasper DA (1994) Bioremediation of agricultural and forestry soils with symbiotic micro-organisms. Aust J Soil Res 32:345–348CrossRefGoogle Scholar
  74. Jasper DA, Robson AD, Abbott LK (1987) The effect of surface mining on the infectivity of vesicular arbuscular mycorrhizal fungi. Aust J Bot 35:642–652CrossRefGoogle Scholar
  75. Jeffries P, Gianinazzi S, Perotto S, Tumau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soil 37:1–16Google Scholar
  76. Johnson PN (1977) Mycorrhizal Endogonaceae in a New Zealand forest. New Phytol 78:161–170CrossRefGoogle Scholar
  77. Johnson CN (1994) Mycophagy and spore dispersal by a rat-kangaroo: consumption of ectomycorrhizal taxa in relation to their abundance. Funct Ecol 8:464–468CrossRefGoogle Scholar
  78. Jones K, Hendrix JW (1987) Inhibition of root extension in tobacco by the mycorrhizal fungus Glomus macrocarpum and its prevention by benomyl. Soil Biol Biochem 19:297–299CrossRefGoogle Scholar
  79. Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and production of extrametrical hyphae by two types of willow ectomycorrhizae at different soil phosphorus levels. New Phytol 115:259–267CrossRefGoogle Scholar
  80. Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57CrossRefGoogle Scholar
  81. Kendrick B (1985) The Fifth Kingdom. Mycologue Publications. Waterloo, OntarioGoogle Scholar
  82. Kieliszewska-Rokicka B (1990) Acid phosphatase activity in roots of Scots pine (Pinussylvestris l) seedlings fertilized with different nitrogen sources. Agric Ecosyst Environ 17(1–4):229–234CrossRefGoogle Scholar
  83. Killham K (1985) Vesicular-arbuscular mycorrhizal mediation of trace and minor element uptake in perennial grasses: relation to livestock herbage. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soils: plants microbes and animals. Blackwell, Oxford, pp 225–232Google Scholar
  84. Klironomos JN, Hart MM (2001) Food-web dynamics. Animal nitrogen swaps for plant carbon. Nature 410:651–652. doi: 10.1038/35070643 PubMedCrossRefGoogle Scholar
  85. Kotter MM, Farentinos RC (1984) Tassel-eared squirrels as spore dispersal agents of hypogeous mycorrhizal fungi. J Mammal 65:684–687CrossRefGoogle Scholar
  86. Krishna KR, Shetty KG, Dart PJ, Andrews DJ (1985) Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil 86:113–125CrossRefGoogle Scholar
  87. Lackie SM, Bowley SR, Peterson RL (1988) Comparison of colonization among half-sib families of Medicago sativa L. by Glomus versiforme (Daniels and Trappe) Berch. New Phytol 108:477–482CrossRefGoogle Scholar
  88. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  89. Lynch JM, Bragg E (1985a) Microorganisms and soil aggregate stability. Advances in soil science, vol 2. Springer, New York, pp 133–171CrossRefGoogle Scholar
  90. Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. In: Advances in Soil Science Vol2, Springer-Verlag, New York, pp. 133-171Google Scholar
  91. Majdi H, Damm E, Nylund J (2001) Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol 150:195–202CrossRefGoogle Scholar
  92. Malajczuk N, Trappe JM, Molina R (1987) Interrelationships among some ectomycorrhizal trees, hypogenous fungi and small mammals: Western Australian and north western American parallels. Aust J Ecol 12:53–55CrossRefGoogle Scholar
  93. Manjunath A, Habte M (1988) Development of vesicular arbuscular mycorrhizal infection and the uptake of immobile mycorrhizas in forestry and agriculture. ACIAR Monograph 32, Australian Centre for International Agricultural Research, Canberra, pp 374Google Scholar
  94. Manjunath A, Habte M (1988b) The development of vesicular arbuscular mycorrhizal infection and the uptake of immobile nutrients in Leucaenaleucocephala. Plant Soil 106:97–103CrossRefGoogle Scholar
  95. Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89(1):58–71Google Scholar
  96. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  97. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102CrossRefGoogle Scholar
  98. Mason PA, Last FT, Wilson J, Deacon JW, Fleming LV, Fox FM (1987) Fruiting and successions of ectomycorrhizal fungi. In: Pegg GF, Ayes PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 253–268Google Scholar
  99. McGonigle TP (1998) A numerical analysis of published field trials with vesicular arbuscular mycorrhizal fungi. Functional Ecol 2:473–478CrossRefGoogle Scholar
  100. McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122CrossRefGoogle Scholar
  101. Meghvansi MK, Prasad K, Mahna SK (2010) Symbiotic potential, competitiveness and compatibility of indigenous Bradyrhizobium japonicum isolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India. Saudi J Biologic Sci 17:303–310CrossRefGoogle Scholar
  102. Menge JA (1983) Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. Can J Bot 61:1015–1024CrossRefGoogle Scholar
  103. Menge JA, Grand LF, Haine LW (1977) The effect of fertilization on growth and mycorrhiza numbers in 11-year-old loblolly pine plantations. Forest Sci 23:37–44Google Scholar
  104. Miller OK Jr (1982) Mycorrhizal fungi and fungal biomass in subalpine tundra at Eagle Summit, Alaska. Holarctic Ecol 5:125–134Google Scholar
  105. Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ, Linderman GR (eds) Mycorrhizae in sustainable agriculture. Agronomy Society of America special Publication No. 54, Madison, WI, pp 29–44Google Scholar
  106. Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Sci 28:423–458Google Scholar
  107. Morton JB (1990) Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): Their role in macro and micro evolutionary processes. Mycotaxon 37:493–515Google Scholar
  108. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes); a new order, Glomales, two new suborders, Glomineae and Gigasporineae and two new families, Acaulosporaceae and Gigasporaceae, with anemendation of Glomacea. Mycotaxonomy 37:471–491Google Scholar
  109. Mosse B (1959) Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Truns Br Mycol Soc 42:439–448CrossRefGoogle Scholar
  110. Mosse B (1978) Mycorrhiza and plant growth. In: Freysen AHJ, Woldendorp JW (eds) Structure and functioning of plant populations. North Holland Publishing Co, Amsterdam, pp 269–289Google Scholar
  111. Nagahashi G, Douds DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408CrossRefGoogle Scholar
  112. Nair MG, Safir GR, Siquueira JO (1991) Isolation and Identification of vesicular Arbuscular mycorrhizal- stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439PubMedPubMedCentralGoogle Scholar
  113. Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270CrossRefGoogle Scholar
  114. Newton AC, Pigott CD (1991) Mineral nutrition and mycorrhizal infection of seedling oak and birch. II. Effect of fertilizers on growth, nutrient uptake and ectomycorrhizal infection. New Phytol 117:45–52CrossRefGoogle Scholar
  115. Nicolson TH (1959) Mycorrhiza in the Gramineae I. vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Myco Soc 42:421–438CrossRefGoogle Scholar
  116. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337CrossRefGoogle Scholar
  117. Odum EP (1984) Properties of agro ecosystem. In: Lowrance R, Stinnerand BR, House GJ (eds) Agriculteral ecosystems. J Wiley and Sons, New York, pp 5–11Google Scholar
  118. Oehl F, Wiemken A, Sieverding E (2002) Glomus caesaris, a new arbuscular mycorrhizal fungus from the Kaiserstuhl in Germany. Mycotaxonomy 84:379–385Google Scholar
  119. Oehl F, Wiemken A, Sieverding E (2003) Glomus spinutiferum: A new ornamental species in the Glomales. Mycotaxonomy 86:157–162Google Scholar
  120. Pacovsky RS (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus-fertilized soybeans. Plant Soil 95:379–388CrossRefGoogle Scholar
  121. Pellet D, Sieverding E (1986) Preferential multiplication of fungal species of the Endogonanceae in the field Demonstrated with weeds. In: Gianinazzi S (ed) Gianinazzi-Pearson V. Physiol Genet Aspec Mycorrhizae INRA, Paris, pp 555–557Google Scholar
  122. Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309CrossRefGoogle Scholar
  123. Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres and reforestation: current knowledge and research needs. Can J For Res 17:929–940CrossRefGoogle Scholar
  124. Potty VP, Indira P (1990) Influence of vesicular arbuscular mycorrlrizae on the photosynthesis and photorespiration of sweet potato (Ipomea batata). In: Jalali BL, Chand H (eds) Curr Trend Mycorrhizal Res. Haryana Agricultural University Press, Hisar, India, p 73Google Scholar
  125. Prasad K (1993) Ecological factors affecting vesicular arbuscular mycorrhiza infection in sugarcane. Ph.D Thesis, B.R. Ambedkar Bihar University, Muzaffarpur, IndiaGoogle Scholar
  126. Prasad K (1995) Physico chemical characteristics of soil in relation to vesicular arbuscular mycorrhizal (Glomus fasciculatum) colonization in Saccharum officinarum L. J Phytol Res 8(2):201–205Google Scholar
  127. Prasad K (1998) Effect of Glomus fasciculatum VAM form and Rhizobium on biomass yield and nutrient uptake of Dalbergia sissoo L. J Trop Forestry 14(111):143–148Google Scholar
  128. Prasad K (2000a) Growth responses of Acacia nilotica (L.) Del. inoculated with Rhizobium and Glomus fasciculatum VAM fungi. J Trop Forestry 16(1):22–27Google Scholar
  129. Prasad K (2000b) Impact of arbuscular mycorrhizal (AM) fungi on biomass yield of Terminalia arjuna under field conditions. Vislesana, Res J (Sci) 7(2):73–79Google Scholar
  130. Prasad K (2000c) Occurrence of vesicular arbuscular mycorrhizal fungi in some cultivated crop plants. In: Maheshwari DK, Dube RC, Prasad G, Navneet (eds) Microbes: agriculture, industry and environment. Bishen Singh Mahendra Pal Singh Publishers, Dehra Dun, pp 65–69Google Scholar
  131. Prasad K (2002) Effect of arbuscular mycorrhizae on biomass yield, uptake and translocation of nitrogen, phosphorus and potassium in Azadirachta indica L. In: Purohit DK, Reedy SR, Singaracharya MA, Girisham S (eds) Manoharachary C. Front Microbial Biotechnol Plant Pathol, Scientific Publishers (India) Jodhpur, pp 187–191Google Scholar
  132. Prasad K (2005) Arbuscular mycorrhizal fungal occurrence in non-cultivated disturbed and non-fertile land of Bettiahraj, Bettiah, Bihar. Mycorrhiza News 16(4):12–14Google Scholar
  133. Prasad K (2006a) Impact of arbuscular mycorrhizal fungus (Glomus fasciculatum) and phosphate solubilizing bacterium (Pseudomonas striata) on growth and nutrient status of Azadirachta indica L. Mycorrhiza News 18(2):10–12Google Scholar
  134. Prasad K (2006b) Influence of indigenous VAM fungus (Glomus fasciculatum) and Rhizobium on growth, nutrient uptake and nodulation in Acacia nilotica. In: Prakash A, Mehrotra VS (eds) Mycorrhiza. Scientific Publishers (India), Jodhpur, pp 139–144Google Scholar
  135. Prasad K (2007) Improvement in bioavailability of nutrition and biomass production to Azadirachta indica (Neem) by arbuscular mycorrhizal symbiosis. J Basic Applied Mycology 6 (I &II):96–101Google Scholar
  136. Prasad K (2010a) Ectomycorrhiza symbiosis: possibilities and prospects. In: Rao MK, Kovices G (eds) Progress in mycology. Scientific Publisher, Jodhpur, India, pp 290–308Google Scholar
  137. Prasad K (2010b) Responses of dual inoculation of arbuscular mycorrhizal fungi on the biomass production, phosphate, roots and shoots phenol concentrations of Terminalia arjuna under field conditions. Mycorrhiza News 22(2):13–17Google Scholar
  138. Prasad K (2011a) Effect of Glomus intraradices AM fungi on the shoot dry matter, seed dry yield, and nitrogen and phosphorus uptake of soybean (Glycine max (L.) Merrill) inoculated with cultivar-specific Bradyrhizobium japonicum. Mycorrhiza News 23(3):13–18Google Scholar
  139. Prasad K (2011b) Interaction between arbuscular mycorrhizal fungus (Glomus fasciculatum) and rhizospheric fungi in Saccharum officinarum L. Amravati Univ Res J 5:53–65Google Scholar
  140. Prasad K (2013) Arbuscular mycorrhizal fungus plays a major role in agriculture and natural ecosystems to improve production in sustainable manner In: Jamaluddin and Singh AK (eds) Microbes and sustainable plant productivity. Scientific Publication (India) Jodhpur, pp 113–138Google Scholar
  141. Prasad K (2015) Biofertilizers: a new dimension for agriculture and environmental development to improve production in sustainable manner. J Basic Applied Mycol 11(1&II):5–13Google Scholar
  142. Prasad K, Bilgrami RS (2004) Impact of Glomus fasciculatum (AMF) and phosphates on biomass yield of Saccharum officinarum L. J Basic Applied Mycol 3(I&II):108–110Google Scholar
  143. Prasad K, Bilgrami RS (2005) Interaction between arbuscular Mycorrhizal fungus (Glomus fasciculatum) and rhizospheric fungi in Saccharum officinarum L. Special, vol. of Rhizosphere 2004. J Soil Sci Plant Nutr 56:1234–1239Google Scholar
  144. Prasad K, Bilgrami RS (2006) Impact of Glomus fasciculatum and potash on biomass yield and sucrose contents of Saccharum officinarum L. In: Prakash A, Mehrotra VS (eds) Mycorrhiza. Scientific Publishers (India), Jodhpur, pp 45–50Google Scholar
  145. Prasad K, Bilgrami RS (2007) Effect of Glomus fasciculatum AM fungus and nitrogen’s on biomass yield, chlorophyll, juice and sucrose contents of Saccharun officinarum L. In: Ram RC, Sinha A (eds) Modern trends in microbial diversity. Daya Publishing House, New Delhi, India, pp 224–233Google Scholar
  146. Prasad K, Deploey JJ (1999) Incidence of arbuscular mycorrhizae and their effect on certain species of trees. JPA Acad Sci 73(3):117–122Google Scholar
  147. Prasad K, Gautam SP (2000) Arbuscular mycorrhizal spore types present in the root zone of Dalbergia sissoo L. Vislesana, Res J (Sci) 7(2):013–018Google Scholar
  148. Prasad K, Gautam SP (2005) Effect of inoculation of arbuscular mycorrhizal fungus (Glomus macrocarpum) on the growth and nutrients uptake of Dendrocalamus strictus (Roxb.) Ness under field conditions. Anusandhan 1:53–62Google Scholar
  149. Prasad K, Kaushik S (2004) Ecology, physiology, biochemistry and taxonomy of arbuscular mycorrhizal fungi. In: Gautam SP, Bansal YK, Pandey AK (eds) Biological diversity: current trends, Prof. R.C. Rajak Festschrift volume. Shree Publication & Distributors, New Delhi, pp 134–141Google Scholar
  150. Prasad K, Meghvansi MK (2005) Interaction between indigenous Glomus fasciculatum (AM fungus) and Rhizobium and their stimulatory effect on growth, nutrient uptake and nodulation in Acacia nilotica (L.) Del. Flora and Fauna 11(1):51–56Google Scholar
  151. Prasad K, Pandey AK (2012) Mycorrhizal symbiosis: A new dimension for agriculture and environmental development to improve production in sustainable manner. In: Bagyaraj DJ, Tilak KVBR, Kehri HK (eds) Microbial diversity and function, New Delhi. New India Publishing Agency, New Delhi, India, pp 389–402Google Scholar
  152. Prasad K, Rajak RC (1999) Recent advances in mycorrhizal taxonomy: morphological and molecular criteria. In: Rajak RC (ed) Microbial biotechnology for sustainable development and productivity. Prof. SK. Hasija Festschrift. Scientific Publishers (India), Jodhpur, pp 62–72Google Scholar
  153. Prasad K, Rajak RC (2000) Biotechnological application of mycorrhizae in reclamation of mined dumps. In: Rai MK, Varma A, Rajak RC (eds) Integrated management of plant resources. Scientific Publishers (India), Jodhpur, pp 283–292Google Scholar
  154. Prasad K, Rajak RC (2001) Microbes and wasteland management: Challenge ahead. In: Roy AK, Varma SK (eds) Wasteland management and environment. Scientific Publishers (India), Jodhpur, pp 27–39Google Scholar
  155. Prasad K, Meghvansi MK, Harwani D, Mahna SK, Werner D (2005a) Synergistic effect of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on growth, yield and nutrient status of soybean [Glycine max (L.) Merrill] Anusandhan 1(1):13–19Google Scholar
  156. Prasad K, Meghvansi MK, Choudhary KK (2005b) Arbuscular mycorrhizal symbiosis: an overview of research and extension needs. In: Tiwari M, Sati SC (eds) The mycorrhizae: diversity, ecology, and application. Daya Publishing House, New Delhi, pp 87–101Google Scholar
  157. Prasad K, Pandey AK, Rajak RC (2005c) Ectomycorrhizal diversity and its role in the productivity of forest plants. In: Mukherjee KG, Tilak KVBR, Reddy SM, Gangwane LV, Prakash P, Kunwar IK (eds) Frontiers in plant sciences. I. K. International Pvt Ltd, New Delhi, India, pp 617–642Google Scholar
  158. Prasad K, Meghvansi MK, Harwani D, Mahna SK, Werner D (2006a) Distribution of arbuscular mycorrhizal fungi in soybean (Glycine max (L.) Merrill) rhizosphere. Mycorrhiza News 17(4):14–17Google Scholar
  159. Prasad K, Kaushik S, Rajak RC (2006b) Performance of arbuscular mycorrhizal biofertilizers and their role in sustainable development and productivity. In: Prakash A, Mehrotra VS (eds) Mycorrhiza. Scientific Publication (India), Jodhpur, pp 281–289Google Scholar
  160. Prasad K, Meghvansi MK, Khan AA (2011) Incidence of arbuscular mycorrhizal fungi (AMF) in tree species in arid zones of Ajmer region of Rajasthan. Mycorrhiza News 22(4):12–15Google Scholar
  161. Rafiq Lone, Shuab R, Malla NA, Gautam AK, Koul KK (2016) Beneficial effects of arbuscular mycorrhizal fungi on underground modified stem propagule plants. J New Biologic Rep 5(1):41–51Google Scholar
  162. Read DJ, Birch CPD (1988) The effects and implications of disturbance of mycorrhizal mycelial systems. Proc Royal Soc Edinburgh 94B:13–24Google Scholar
  163. Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303Google Scholar
  164. Read DL, Leake JR, Langdale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 181–204Google Scholar
  165. Reeves BF, Wagner D, Moorman T, Keil J (1979) The role of endo-mycorrhizae in revegetation practices in the semi-arid west. I. A comparison of the incidence of mycorrhizae in severely disturbed vs. natural environments. Am J Bot 66:6–13CrossRefGoogle Scholar
  166. Rilling M (2004) Arbuscular mycorrhizae, glomalin and soil aggregation. Can J Soil Sci 84:355–363CrossRefGoogle Scholar
  167. Rilling MP, Ramsey S, Morris Paul E (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299CrossRefGoogle Scholar
  168. Ritz K, Newman EI (1986) Nutrient transport between ryegrass plants differing in nutrient status. Oecologia (Berl) 70:128–131CrossRefGoogle Scholar
  169. Rose SL (1988) Above and below ground community development in a marine sand dune ecosystem. Plant Soil 109:215–226CrossRefGoogle Scholar
  170. Rothwell FM (1984) Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of Lespedex. Plant Soil 80:99–104CrossRefGoogle Scholar
  171. Rubio R, Moraga E, Borie F (1990) Acid phosphatase activity and vesicular arbuscular mycorrhizal infection associated with roots of 4 wheat cultivars. J Plant Nutr 13(5):585–598CrossRefGoogle Scholar
  172. Rupp LA, Mudge KW, Negm FB (1989) Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings. Can J Bot 67:477–482CrossRefGoogle Scholar
  173. Sainz MJ, Trasar MC, Arines, Gil-Stores F (1987) Phosphatase activity in three acid soils as affected by VAM symbiosis and soil steam-sterilization. In: Proceedings of Seventh North American Conference on Mycorrhiza 3–8 May 1987, Gainesville, FloridaGoogle Scholar
  174. Sasan RK, Bidochka MJ (2012) The insect- pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107PubMedCrossRefGoogle Scholar
  175. Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhizae 15:539–545CrossRefGoogle Scholar
  176. Scheltema MA, Abbott LK, Robson AD (1985) Seasonal variation in the infectivity of VA mycorrhizal fungi in annual pastures in a mediterranean environment. Aust J Agric Res 38:70–715Google Scholar
  177. Sharma AK, Srivastava PC, Johri BN (1990) Influence of Glomus macrocarpum on growth and physiology of Sesbania aculenta. In: Bagyaraj DJ, Manjunath A (eds) Mycorrhiza symbiosis and plant growth. Proc Sec Nat Conf on Mycorrhizae Nov. 21–23. 1990. Reproduction/Graphis Type Setters, Bangalore, and India, pp 86–87Google Scholar
  178. Sievarding E, Glavez A (1988) Performance of different cassava clones with various VA mycorrhizal Fungi. Angew Botanik 62:273–282Google Scholar
  179. Simard SW, Perry DA, Smith JE, Molina R (1997) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betulapa pyrifera and Pseudotsuga menziesii. New Phytol 136:327–340CrossRefGoogle Scholar
  180. Simpson D, Daft MJ (1990a) Spore production and mycorrhizal development in various tropical crop hosts infected with Glomus clarum. Plant Soil 121:171–178CrossRefGoogle Scholar
  181. Simpson D, Daft MJ (1990b) Interactions between water-stress and different mycorrhizal inoculum on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186CrossRefGoogle Scholar
  182. Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann Rev Plant Physiol Plant Mol Biol 39:221–244CrossRefGoogle Scholar
  183. St John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493CrossRefGoogle Scholar
  184. Struble JE, Skipper HD (1988) Vesicular-arbuscular mycorrhizal fungal spore production as influenced by plant species. Plant Soil 109:277–280CrossRefGoogle Scholar
  185. Thomas GV, Ghai SK (1987) Genotype dependent variation in vesicular arbuscular mycorrhizal colonisation of coconut seedlings. Proc Indian Acad Sci (Plant Sci) 97:289–294Google Scholar
  186. Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867CrossRefGoogle Scholar
  187. Tinker PB, Gilden A (1983) Mycorrhizal fungi and ion uptake. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients, uptake and utilization by plants. Academic Press, NY, pp 21–32CrossRefGoogle Scholar
  188. Tisdall JM, Oades JM (1979) Stabilization of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441CrossRefGoogle Scholar
  189. Toth R, Toth D, Stark D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonisation in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044CrossRefGoogle Scholar
  190. Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the Angiosperms from an evolutionary standpoint. In: Safir GR (ed) Eco physiology of VA mycorrhizal plants. CRC Press, Boca Raton, Florida, pp 5–25Google Scholar
  191. Usuki F, Narisawa KA (2007) Mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184PubMedCrossRefGoogle Scholar
  192. Van der Heijden MG, Klironimos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998a) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  193. Van der Heijden MG, Boller T, Wiemken A, Sanders IR (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091CrossRefGoogle Scholar
  194. Vogt KA, Grier CC, Meir CE, Edmonds RL (1982) Mycorrhizal role in net production and nutrient cycling in Abiesamabilis ecosystems in western Washington. Ecology 63:370–380CrossRefGoogle Scholar
  195. Walker C, Biggin P, Jardine DC (1986) Difference in mycorrhizal status among clones of Sitka spruce. Forest Ecol Manag 14:275–283CrossRefGoogle Scholar
  196. Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354CrossRefGoogle Scholar
  197. Went FW, Stark N (1968) The biological and mechanical role of soil fungi. Proc Natl Acad Sci 60:497–504PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wright SF (2005) Roots and soil management: interactions between roots and the soil. In: Zobel RW, Wright SF (eds) Management of arbuscular mycorrhizal fungi. American Society of Agronomy, USA, pp 183–197Google Scholar
  199. Wright SF, Millner PD (1994) Dynamic processes of vesicular-arbuscular. Mycorrhizae: a mycorrhizasystem within agro ecosystem. In: Hatfield JL, Stevart BA (eds) Soil biology: effects on soil quality. Lewis Publishers, Boca Raton, pp 29–57Google Scholar
  200. Wu B, Nara K, Hogetsu T (2001) Can 14C-labelled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146CrossRefGoogle Scholar
  201. Zubek S, Majewska ML, Błaszkowski J, Stefanowicz AM, Nobis M, Kapusta P (2016) Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol Fertil Soils 52:879–89893CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biotechnology and Management of Bioresources DivisionTERINew DelhiIndia

Personalised recommendations