Skip to main content

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

As most geophysical data are imprecise they implicitly have a level of uncertainty which makes them a good choice for using fuzzy methods to model and/or interpret them. In this chapter we investigate the use of fuzzy methods in various geophysical disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman E.M., El-Araby T.M. and Abo-Ezz E. R., 2001. “Three least-squares minimization approach to depth, shape, and amplitude coefficient determination from gravity data”, Geophysics 66, 1105–1109.

    Google Scholar 

  • Aki K., V. Ferrazzini, Seismic monitoring and modelling of an active volcano for prediction, J. Geophys. Res. 105 (2000)16617–16640.

    Google Scholar 

  • An P. , Moon W. M., Rencz A., 1991, Application of fuzzy set theory to integrated mineral exploration ,Canadian Journal of exploration geophysics, 27(1), 1-11.

    Google Scholar 

  • Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, 1973.

    Google Scholar 

  • Asada, T. (1982). Earthquake Prediction Techniques. – Their application. Japan: University of Tokyo Press. 317.

    Google Scholar 

  • Boulanger O. and Chouteau M., 2001, “Constraints in 3D gravity inversion”, Geophysical Prospecting 49, 265–280.

    Google Scholar 

  • Buckley, J. J. & Feuring, T. (2000). Linear and Nonlinear Fuzzy Regression: Evolutionary Algorithm Solutions. Fuz. Sets Syst., 112:381–94.

    Google Scholar 

  • Cagnoli B., 1998, Fuzzy logic in volcanology, Episodes, Journal of international geosciences, 21(2), 94–96.

    Google Scholar 

  • Chen, X., Vierling, L. and Deering, D., 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98 (1), 63–79.

    Google Scholar 

  • Chopra, S., Yadav, R. B. S., Patel, H., Kumar, S., Rao K. M., Rastogi, B. K., Hameed A., & Srivastava, S. (2008). The Gujarat (India) Seismic Network,” Seismological Research Letters, 79(6): 806–815.

    Google Scholar 

  • Cornelis, C., & Kerre, E. (2003). A Fuzzy Inference Methodology Based on the fuzzification of Set Inclusion PhysicaVerlag. In: Recent Advances in Intelligent Paradigms and applications, 71–89.

    Google Scholar 

  • Diamond, P. (1988). Fuzzy Least Squares. Inform. Sci., 46: 141-57.

    Google Scholar 

  • Dekkers, M. J., C. G. Langereis, S. P. Vriend, P. J. M. van Santvoort, and J. de Lange, 1994 Fuzzy c-means cluster analysis of early diagenetic effects on natural remanent magnetization acquisition in a 1.1 Myr piston core from the Central Mediterranean, Phys. Earth Planet. Inter., 85, 155–171.

    Google Scholar 

  • Dmowska, R. (1997). Earthquake Prediction–State of the Art, Pageoph Topical Volumes Max Wyss Ed., Birkhäuser Verlag, Basel: Boston, USA.

    Google Scholar 

  • Dragoni, M., and E. Boschi., 1992, Earthquake Prediction: Proceedings of the International School of Solid Earth Geophysics, 5th Course, Il Cigno Galileo Galilei Edizioni Di Arte E Scienza, Rome.

    Google Scholar 

  • Dombi, J., 1990. Membership function as an evaluation, Fuzzy Sets and Systems. 35 (1), 1–21.

    Google Scholar 

  • Dutta P. K., Mishra O. P. & Naskar M. K., 2013, Review of operational earthquake forecasting methodologies using linguistic fuzzy rule-based models from imprecise data with weighted regression approach, Journal of Sustainability Science and Management, 8(2), 220–235.

    Google Scholar 

  • Dutta, Pushan, Naskar, M. K. & Mishra, O. P. (2011). South Asia Earthquake Catalog Magnitude Data Regression Analysis. International Journal of Statistics and Analysis, 1(2): 161–170.

    Google Scholar 

  • Elawadi E., Salem A. and Ushijima K., 2001, “Detection of cavities and tunnels from gravity data using a neural network”, Exploration Geophysics 32, 75–79.

    Google Scholar 

  • Fisher, P.F., 2010. Remote sensing of land cover classes as type 2 fuzzy sets. Remote Sensing of Environment, 114 (2), 309–321.

    Google Scholar 

  • Fisher, R.V., and Schmincke, H.-U., 1984, Pyroclastic rocks: Springer-Verlag, Berlin, 472.

    Google Scholar 

  • Fung, T., 1990. An assessment of TM imagery for land cover change detection. IEEE Transactions on Geoscience and Remote Sensing, 28 (4), 681–684.

    Google Scholar 

  • Fung, T., and Ledrew, E., 1988. The determination of optimal threshold levels for change detection using various accuracy indices. Photogrammetric Engineering and Remote Sensing, 54 (10), 1449–1454.

    Google Scholar 

  • Geller, R. J. (1997). Earthquake Prediction: A Critical Review. Geophysics J. Int., 131: 425–450.

    Google Scholar 

  • Geller, R. J., Jackson, D. D., Kagan, Y. Y. & Mulagria, F. (1997). Earthquake Cannot Be Predicted. Science, 275(5306): 1616–1617.

    Google Scholar 

  • Grandjean G., Bitri A, Pennetier C., Meric O. & Malet J.-P. (2006a). Caractérisation de la structure interne et de l’état hydrique de glissements argilo-marneux par tomographie géophysique : l’exemple du glissement-coulée de Super-Sauze. – C. R. Acad. Sci., 338, 587–595.

    Google Scholar 

  • Grandjean G., Malet J.-P., Bitri A., & Meric O., (2006b), Geophysical data fusion by fuzzy logic for imaging the mechanical behavior of mudslides, Bull. Soc. géol. Fr., 2006, t. 177, no 2, 127–136.

    Google Scholar 

  • Grêt A.A., E.E. Klingelé, H.-G. Kahle, 2000, Application of artificial neural networks for gravity interpretation in two dimensions: a test study, Bollettino Digeofisicateorica Edapplicata, 41(1), 1–20.

    Google Scholar 

  • Guha, S. K. & Patwardhan, A. M. (1985). Earthquake Prediction: Present Status: Proceedings of Symposium Held at the Department of Geology, University of Poona. Pune: University of Poona Pub.

    Google Scholar 

  • Gupta O.P., 1983, “A least-squares approach to depth determination from gravity data”, Geophysics 48, 357–360.

    Google Scholar 

  • Gvishiani A.D., V.O. Mikhailov, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotski, M. Diament, A. Galdiano, Artificial Intelligence Techniques in Potential Fields and Other Geophysical Studies, vol. 20, Cahiers de Centre Europeen de Geodynamique et de Seismologie, Luxembourg, 2003, 63–69.

    Google Scholar 

  • Hajian A. and Styles P., 2012, ”Shape factor and depth estimation of microgravity anomalies via combination of artificial neural networks and fuzzy rule based system-”, 6th International Conference on Fuzzy Information and Engineering, Mazandaran University, IRAN, Oct. 25–26.

    Google Scholar 

  • Hajian A., R. Kimiaeefar, H.R. Siahkoohi, 2016, (Random Noise Attenuation in Reflection Seismic Data Using Adaptive Neuro-fuzzy Interference System (ANFIS), 78th European Association of Geoscientists and Engineers, Vienna, Austria, EAGE 2016.

    Google Scholar 

  • Hame, T.H., 1986. Satellite image aided change detection. In: Remote sensing-aided forest inventory. Department of Forest Mensuration and Management, University of Helsinki, Helsinki, Finland. https://en.wikipedia.org/wiki/Pignistic_probability

  • Jamshidi, M., Vadiee, N., and Ross, T.J., 1993, Fuzzy logic and control, software and hardware applications: Prentice Hall, Englewood Cliffs, 397.

    Google Scholar 

  • Jantzen J., 2004, A tutorial on adaptive fuzzy control, Journal of Technical University of Denmark, Dinamarca, in: http://www.eunite.org/

  • Jensen, J.R., and Toll, D.L., 1982, Detecting residential land use development at the urban fringe. Photogramm. Eng. Remote Sens., 48 (4), 629-643.

    Google Scholar 

  • Jensen, J.R. and Toll, D.L., 1983. Detecting residential land use development at the urban fringe. Photogrammetric Engineering and Remote Sensing, 48 (4), 629–643.

    Google Scholar 

  • Kisslinger, C. (1986). Practical Approaches to Earthquake Prediction and Warning.

    Google Scholar 

  • Klir, G. J. and T. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice hall of India Private Ltd., New Delhi, 2000.

    Google Scholar 

  • Kruiver, P. P., Y. S. Kok, M. J. Dekkers, C. G. Langereis, and C. Laj, A pseudo-Thellier relative palaeo intensity record, and rockmagnetic and geochemical parameters in relationship to climate during the last 276 kys in the Azores region, Geophys. J. Int., 136(3), 757–770, 1999.

    Google Scholar 

  • Li X. and Chouteau M., 1998, “Three-dimensional gravity modeling in all space”, Surveys in Geophysics 19, 339–368.

    Google Scholar 

  • Li Y. and Oldenburg D.W., 1998, “3-D inversion of gravity data”, Geophysics 63, 109–119.

    Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E. and Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing, 25 (12), 2365–2401.

    Google Scholar 

  • Lu, D., Mausel, Batistella, M., and Moran, E., 2005, Land-cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int. J. Remote Sens. 26 (1), 101-114. https://doi.org/10.1080/01431160410001720748.

  • Madanian M., Soffianian A., Hajian A., 2014, ”Change detection through four techniques using multi-temporal Landsat Thematic Mapper data: a case study on Falavarjan area, Isfahan, Iran”, Journal of Environmental Informatics, 23(2), 58–66.

    Google Scholar 

  • Metternicht, G., 1999. Change detection assessment using fuzzy sets and remotely sensed data: an application of topographic map revision. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 221–233.

    Google Scholar 

  • MINERAL EXPLORATION, Canadian journal of exploration geophysics, 27(1), p 1–11.

    Google Scholar 

  • Mishra, O. P. (2012). Seismological Research in India. Proceeds. Ind. Nat. Sci. Acad. Publication (PINSA), 76(3): 361–375.

    Google Scholar 

  • Mohan N.L., Anandadabu L. and Roa S., 1986, “Gravity interpretation using Mellin transform”, Geophysics 52, 114–122.

    Google Scholar 

  • Moon M.W., An P., 1991, Integration of Geophysical, Geological and Remote Sensing Data Using Fuzzy Set Theory. Geoinformatics, 2(2),p 171–176.

    Google Scholar 

  • Nelson, S.A.C., Sorrano, P.A. and Qi, J., 2003. Land cover change in the Upper Barataria Basin Estuary, Louisiana, from 1972–1992: increases in wetland area. Environmental Management, 29 (5), 716–727.

    Google Scholar 

  • Netherlands: Kluwer Academic Pub., Amsterdam.

    Google Scholar 

  • Newhall, C.G., and Self, S., 1982, The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism: Journal of Geophysical Research, 87, 1231–1238.

    Google Scholar 

  • NIFLE A. & REYNAUDR., 2000, Double representation of information and hybrid combination for identification systems. –Proc. 3rd Int. Conf. on Information Fusion, Paris France, Vol. 1, 23–30.

    Google Scholar 

  • Nyquist J.E., C.E. Corry, Self-potential: the ugly duckling of environmental geophysics, Lead. Edge (2002) 446–451.

    Google Scholar 

  • Odegard M. E. and Berg J. W., 1965, “Gravity interpretation using the Fourier integral”, Geophysics 30, 424–438.

    Google Scholar 

  • Osman O., Albora A.M. and Ucan O. N., 2007, “Forward Modeling with Forced Neural Networks for Gravity Anomaly Profile”, Mathematical Geology 39, 593–605. https://doi.org/10.1007/s11004-007-9114-8.

  • Pilon, P.G., Howarth, P.J., Bullock, R.A. and Adeniyi, P.O., 1988. An enhanced classification approach to change detection in semi-arid environments. Photogrammetric Engineering and Remote Sensing, 54 (12), 1709–1716.

    Google Scholar 

  • Reid A.B., Allsop J.M., Granser H., Millet A.J. and Somerton I.W., 1990, “Magnetic interpretation in three dimensions using Euler Deconvolution”, Geophysics 55, 80–91.

    Google Scholar 

  • Ridd, M.K. and Liu, J., 1998. A comparison of four algorithms for change detection in an urban environment. Remote Sensing of Environment, 63, 95–100.

    Google Scholar 

  • Salem A., Elawadi E., Abdelaziz A. and Ushijima K., 2003, “Imaging subsurface cavities from microgravity data using Hopfield neural network”, Proceeding of the 7th International Symposium on Recent Advances in Exploration Geophysics in Kyoto, RAEG2003, 199–205.

    Google Scholar 

  • Serra, P., Pons, X. and Sauri, D., 2008. Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Applied Geography, 28 (3), 189–209.

    Google Scholar 

  • Sharma B. and Geldrat L.P., 1968, “Analysis of gravity anomalies of two-dimensional faults using Fourier transforms”, Geophysical Prospecting 16, 77–93.

    Google Scholar 

  • Shaw R.K. and Agarwal P., 1990, “The application of Walsh transforms to interpret gravity anomalies due to some simple geometrical shaped causative sources: A feasibility study”, Geophysics 55, 843–850.

    Google Scholar 

  • Shih-jung, M. (1993). Introduction to Earthquake Prediction in China. she Pub. Pei-ching, China: Ti chen chiu pan.

    Google Scholar 

  • Shimazaki, K. & Stuart, W. (1985). Earthquake Prediction. Basel: Boston, USA: Birkhäuser Pub.

    Google Scholar 

  • Singh, A., 1989. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10 (6), 989–1003.

    Google Scholar 

  • Singh, v., Moon. WM. and Fedikow. M., 1989. Investigation of Airborne MEIS-II and MSS data for biogeochemical exploration of mineralized zones, Farley Lake, Manitoba: Canadian Journal of Remote sensing 15, 122.133.

    Google Scholar 

  • Smith R.A., 1959, Some depth formulate for local magnetic and gravity anomalies. Geophysical Prospecting 7, 55–63.

    Google Scholar 

  • Sridharan M., 2009, Fuzzy mathematical model for the analysis of geomagnetic field data, Earth Planets Space, 61, 1169–1177.

    Google Scholar 

  • Staudacher, La Fournaise. Smithonian institution, Bull. Glob. Volcanism Netw. 23-3 (1998) 2–4.

    Google Scholar 

  • Tanaka, H., Uejima, S., and Asia, K., 1982, Linear Regression Analysis with Fuzzy Model,IEEE Trans. Systems Man. Cybernet., 12, 903-907.

    Google Scholar 

  • Thompson D.T., 1982, EULDPH-A new technique for making computer-assisted depth estimations from magnetic data, Geophysics 47, 31–37.

    Google Scholar 

  • Tso, B. and Mather, P.M., 2009. Classification methods for remotely sensed data. London: Taylor & Fransis.

    Google Scholar 

  • Uyeda S., Introduction to the VAN method of earthquake prediction, in: J. Lighthill (Ed.), A Critical Review of VAN, World Scientific, Singapore, 1996, 3–28.

    Google Scholar 

  • Vogel, A., and Itsikara, A. M., 1980, Multidisciplinary Approach to Earthquake Prediction: International Symposium on Earthquake Prediction in the North Anatolian Fault Zone (1980: Istanbul, Turkey), proceedings of the International Symposium on Earthquake Prediction in the North Anatolian Fault Zone, held in Istanbul, March 31-April 5, 1980. F. Vieweg Pub., Braunschweig, Germany, 1982.

    Google Scholar 

  • Wulder, M.A., White, J.C., Goward, S.N., Masek, J.G., Irons, J.R. and Herold, M., et al. 2008. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112 (3), 955–969.

    Google Scholar 

  • Zadeh, L. A., 1965, Fuzzy sets, Inform. Control, 8, 338–353.

    Google Scholar 

  • Zimmermann H. and Zysno P., 1980, Latent connectives, human decision making, Fuzzy Sets and Systems, 4, 37-51.

    Google Scholar 

  • Zlotnicki J., MouJl J L L., Gvishiani A., Agayan S., Mikhailov V., Bogoutdinov S., Kanwar R., Yvetot P., 2005, Automatic fuzzy-logic recognition of anomalous activity on long geophysical records: Application to electric signals associated with the volcanic activity of La Fournaise volcano (Réunion Island)Earth and Planetary Science Letters 234, 261–278.

    Google Scholar 

  • Zlotnicki J., Y. Nishida, Review on morphological insights of self-potential anomalies on volcanoes, Surv. Geophys. 24(2003) 291–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Hajian .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajian, A., Styles, P. (2018). Applications of Fuzzy Logic in Geophysics. In: Application of Soft Computing and Intelligent Methods in Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-66532-0_4

Download citation

Publish with us

Policies and ethics