Skip to main content

Using Coloring Function to Partition Vertices in a Fuzzy Graph

  • Conference paper
  • First Online:
Fuzzy Information and Engineering and Decision (IWDS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 646))

Included in the following conference series:

  • 879 Accesses

Abstract

Motivated by some problems in real life, we consider the problem how to partition vertices of a fuzzy graph \(\xi = (V, \sigma , \mu )\). We define a coloring function (or coloring for short) of a fuzzy graph \(\xi \) to be a mapping \(f: V \rightarrow R\) such that \(|\sigma (v)f(v)-\sigma (u)f(u)|\ge \mu (vu)\) for any \(v,u\in V\). If \(|\{f(v): v\in V\}|\le |\{g(v): v\in V\}|\) for any coloring g, then f is a minimum coloring and the cardinality \(|\{f(v): v\in V\}|\) is called the chromatic number of \(\xi \), denoted \(\chi (\xi )\).

The topic is interesting because a series of results show that the chromatic number problem for fuzzy graphs is essential a new combinatorial optimization problem different from, but having some relations with, the chromatic number problem for crisp graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  2. Bhutani, K.R., Battou, A.: On M-strong fuzzy graphs. Inf. Sci. 155(12), 103–109 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph theory. Springer, New York (2008)

    Book  MATH  Google Scholar 

  4. Bhutani, K.R., Rosenfeld, A.: Strong arcs in fuzzy graphs. Inf. Sci. 152, 319–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Hao, F., Park, D.S., Li, S., Lee, H.M.: Mining-maximal cliques from a fuzzy graph. Sustainability 8(6), 553–559 (2016)

    Article  Google Scholar 

  7. Koczy, L.T.: Fuzzy graphs in the evaluation and optimization of networks. Fuzzy Sets Syst. 46, 307–319 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miyamoto, S.: Remarks on basics of fuzzy sets and fuzzy multisets. Fuzzy Sets Syst. 156, 427–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Hypergraphs. Physica Verlag, Heidelberg (2000)

    Book  MATH  Google Scholar 

  10. Mathew, S., Sunitha, M.S.: Types of arcs in a fuzzy graph. Inf. Sci. 179, 1760–1768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Manjusha, O.T., Sunitha, M.S.: Strong domination in fuzzy graphs. Fuzzy Inf. Eng. 7, 369–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pramanik, T., Samanta, S., Pal, M.: Fuzzy colouring of fuzzy graphs. Afrika Mathematika 27(1–2), 37–50 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Rosenfeld, A.: Fuzzy graphs. In: Fuzzy Sets and Their Application to Cognitive and Decision Processes, pp. 77–95. Academic Press (1975)

    Google Scholar 

  14. Sunitha, M.S., Mathew, S.: Fuzzy graph theory: a survey. Ann. Pure Appl. Math. 4, 92–110 (2013)

    Google Scholar 

  15. Somasundaram, A., Somasundaram, S.: Domination in fuzzy graphs-I. Pattern Recogn. Lett. 19, 787–791 (1998)

    Article  MATH  Google Scholar 

  16. Somasundaram, A.: Domination in fuzzy graphs-II. J. Fuzzy Math. 13(2), 281–288 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Samanta, S., Pal, M.: Bipolar fuzzy hypergraphs. Int. J. Fuzzy Logic Syst. 2(1), 17–28 (2012)

    Article  Google Scholar 

  18. Samanta, S., Pal, M.: Some more results on bipolar fuzzy sets and bipolar fuzzy intersection graphs. J. Fuzzy Math. 22(2), 253–262 (2014)

    MATH  Google Scholar 

  19. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)

    MATH  Google Scholar 

  20. Yager, R.R.: On the theory of bags. Int. J. Gen Syst 13, 23–37 (1986)

    Article  MathSciNet  Google Scholar 

  21. Yu, X.H., Xu, Z.S.: Graph-based multi-agent decision making. Int. J. Approx. Reason. 53(4), 502–512 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zadeh, L.A.: Fuzzy sets. Inf. Comput. 8, 338–353 (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

Thanks to the support by the Natural Science Foundation of Jiangsu Province (No. BK20151117).

Recommender: Lianying Miao, China University of Mining and Technology, Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-cai Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Zhao, Yc., Liu, Xx., Liao, Zh. (2018). Using Coloring Function to Partition Vertices in a Fuzzy Graph. In: Cao, BY. (eds) Fuzzy Information and Engineering and Decision. IWDS 2016. Advances in Intelligent Systems and Computing, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-319-66514-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66514-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66513-9

  • Online ISBN: 978-3-319-66514-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics