Skip to main content

Totally Endoscopic Aortic Valve Replacement (TEAVR)

  • Chapter
  • First Online:
Advances in Treatments for Aortic Valve and Root Diseases
  • 1032 Accesses

Abstract

The future algorythm regulating the equilibrium between TAVI and Surgical aortic valve replacement can be imaged but is not yet defined. We do not know which will be the baseline of remaining isolated SAVR. If most research energies are logically invested in TAVI, surgery can still evolve in order to provide the minimal degree of wall chest trauma in the subset of patients that still require a complete removal of the underlying pathology (valve leaflets). Totally endoscopic aortic valve replacement (TEAVR), and Robotic TEAVR are part of this evolution. Initial experiences in selected low risk patients seem promising. We decribe in this chapter the technicall details of this challenging research process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Zhou Y, et al. Transcatheter versus surgical aortic valve replacement in low to intermediate risk patients: a meta-analysis of randomized and observational studies. Int J Cardiol. 2017;228:723–8.

    Article  Google Scholar 

  2. Praz F, et al. Latest evidence on transcatheter aortic valve implantation vs. surgical aortic valve replacement for the treatment of aortic stenosis in high and intermediate-risk patients. Curr Opin Cardiol. 2017;32(2):117–22.

    Article  Google Scholar 

  3. Kodali S, et al. Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards sapien valve in the PARTNER trial: characterizing patients and impact on outcomes. Eur Heart J. 2015;36(7):449–56.

    Article  Google Scholar 

  4. Maisano F, Taramasso M, Nietlispach F. Prognostic influence of paravalvular leak following TAVI: is aortic regurgitation an active incremental risk factor or just a mere indicator? Eur Heart J. 2015;36(7):413–5.

    Article  Google Scholar 

  5. Nishiyama T, et al. Predictive factor and clinical consequence of left bundle-branch block after a transcatheter aortic valve implantation. Int J Cardiol. 2017;227:25–9.

    Article  Google Scholar 

  6. Merk DR, et al. Minimal invasive aortic valve replacement surgery is associated with improved survival: a propensity-matched comparison. Eur J Cardiothorac Surg. 2014;47(1):11–7. discussion 17

    Article  Google Scholar 

  7. Malaisrie SC, et al. Current era minimally invasive aortic valve replacement: techniques and practice. J Thorac Cardiovasc Surg. 2014;147(1):6–14.

    Article  Google Scholar 

  8. Kopp M, et al. Psychomotor car-driving abilities after robotically assisted totally endoscopic coronary artery bypass grafting. Thorac Cardiovasc Surg. 2012;60(7):462–7.

    PubMed  Google Scholar 

  9. Morgan JA, et al. Robotic techniques improve quality of life in patients undergoing atrial septal defect repair. Ann Thorac Surg. 2004;77(4):1328–33.

    Article  Google Scholar 

  10. Vola M, et al. First human totally endoscopic aortic valve replacement: an early report. J Thorac Cardiovasc Surg. 2014;147(3):1091–3.

    Article  Google Scholar 

  11. Vahidkhah K, et al. Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets. Eur J Cardiothorac Surg. 2017;51(5):927–35.

    PubMed  Google Scholar 

  12. Karangelis D, et al. What is the role of sutureless aortic valves in today’s armamentarium? Expert Rev Cardiovasc Ther. 2017;15(2):83–91.

    Article  CAS  Google Scholar 

  13. Concistre G, et al. Sutureless aortic valve implantation through an upper v-type ministernotomy: an innovative approach in high-risk patients. Innovations (Phila). 2013;8(1):23–8.

    Google Scholar 

  14. Gilmanov D, et al. Perceval S sutureless aortic valve prosthesis implantation via a right anterior minithoracotomy. Multimed Man Cardiothorac Surg. 2013;2013:mmt012.

    PubMed  Google Scholar 

  15. Vola M, et al. Closed chest human aortic valve removal and replacement: technical feasibility and one year follow-up. Int J Cardiol. 2016;211:71–8.

    Article  Google Scholar 

  16. Vola M, et al. Proof of concept of an endoscopic sutureless valve sizer. Innovations (Phila). 2016;11(5):337–41.

    Google Scholar 

  17. Vola M, et al. First in human totally endoscopic perceval valve implantation. Ann Thorac Surg. 2016;102(4):e299–301.

    Article  Google Scholar 

  18. Vola M, et al. Video-assisted minithoracotomy approach: technical developments towards totally endoscopic sutureless aortic valve replacement. J Card Surg. 2014;29(4):494–6.

    Article  Google Scholar 

  19. Vola M, et al. Robotic total endoscopic sutureless aortic valve replacement: proof of concept for a future surgical setting. Int J Med Robot. 2015;12(3):370–4.

    Article  Google Scholar 

Download references

Disclosures

Dr. Vola has been a proctor and performed lectures for Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Vola M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vola, M. (2018). Totally Endoscopic Aortic Valve Replacement (TEAVR). In: Fattouch, K., Lancellotti, P., Vannan, M., Speziale, G. (eds) Advances in Treatments for Aortic Valve and Root Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-66483-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66483-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66482-8

  • Online ISBN: 978-3-319-66483-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics