Skip to main content

Kranz Anatomy

  • Chapter
  • First Online:
Anatomical Adaptations of Halophytes

Abstract

Kranz anatomy is very interesting as a perfect example of connection between structure and functional processes in C4 photosynthetic plants. It has been evidenced in the nineteenth century in many Chenpodiaceae species and recognized and nominated as Kranz anatomy later in the history of C4 photosynthesis. It comprises two closed and distinct chlorenchyma tissues: an external one and an inner bundle sheath tissue. These tissues are arranged concentrically with respect to vascular tissues. There are many sub-types described in the frame of this chlorenchymatic arrangement and they are reviewed here in relation to old research findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A serious problem is that related to taxonomical nomenclature. Chenopods species have many synonyms, used by various botanists. For instance, this is synonymous with Bassia muricata, and Echinopsilon hyssopifolia, with Bassia hyssopifolia. However, sometimes slight differences occur between drawings of the same species given by different botanists (see next paragraphs).

References

  • Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Akhani H, Trimborn P, Ziegler H (1997) Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst Evol 206(1–4):187–221

    Article  Google Scholar 

  • Arcanheli G (1890) Sulla struttura delle foglie dell’ Atriplex nummularia Lind. in relazione alla assimilazione. Nuova giorn Ital 22:426–430

    Google Scholar 

  • Chermezon H (1910) Recherches anatomiques sur les plantes littorales. Ann Sci Nat sér 9 Bot 12:117–313

    Google Scholar 

  • Carolin RC, Jacobs SWL, Vesk M (1975) Leaf structure in Chenopodiaceae. Bot Jahr Syst Pflanzengeschichte and Pflanyengeographie 95:226–255

    Google Scholar 

  • Carolin RC, Jacobs SWL, Vesk M (1982) The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust J Bot 30:387–392

    Article  Google Scholar 

  • Clements FE (1920) Plant indicators: the relation of plant communities to process and practice. Carnegie Institution, Washington

    Google Scholar 

  • Dengler NG, Nelson T (1999) Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 133–172

    Chapter  Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Ann Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  PubMed  Google Scholar 

  • Fisher DD, Schenk HJ, Thorsch JA, Ferren WR (1997) Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America. Am J Bot 84:1198–1210

    Article  CAS  PubMed  Google Scholar 

  • Gamaley IB (1985) Variaţii kranţ—anatomii u rastenii pustyni Gobi i Karakumi (The variations of the Kranz-anatomy in Gobi and Karakum plants). Bot Jurn SSSR 70:1302–1314

    Google Scholar 

  • Grigore M-N (2008) Introducere în Halofitologie. Elemente de Anatomie Integrativă. PIM, Iaşi

    Google Scholar 

  • Grigore M-N, Toma C (2007) Histo—anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans on Biol and Biomed 4:204–218

    Google Scholar 

  • Grigore M-N, Toma C (2008) Ecological anatomy of halophyte species from the Chenopodiaceae family. Advanced topics on mathematical biology and ecology (Proceedings of the 4th WSEAS International Conference on Mathematical Biology and Ecology—MABE ’08, Acapulco, Mexico, January 25–27, 2008), pp 62–67

    Google Scholar 

  • Grigore M-N, Toma C (2010) Halofitele. Aspecte de anatomie ecologică. Edit. Univ. “Al. I. Cuza”, Iaşi

    Google Scholar 

  • Grigore M-N, Toma C, Ivănescu L (2011) Anatomical and ecological observations on Mediterranean halophytes: Suaeda Forssk. ex Scop. genus. Lucr. Şt. (Horticultură). USAMV “Ion Ionescu de la Brad”, Iaşi 54(1):23–28

    Google Scholar 

  • Grigore M-N, Toma C, Zamfirache M-M, Boscaiu M, Olteanu Z, Cojocaru D (2012a) Ecological anatomy in halophytes with C4 photosynthesis: discussing adaptative features in endangered ecosystems. Carpathian J of Earth and Environ Sci 7(2):13–21

    Google Scholar 

  • Grigore M-N, Toma C, Zamfirache M-M, Ivănescu L (2012b) A survey of anatomical adaptations in Romanian halophytes. Towards an ecological interpretation. Fres Environ Bull 21(11b):3370–3375

    CAS  Google Scholar 

  • Grigore M-N, Ivănescu L, Toma C (2014) Halophytes: an integrative anatomical study. Springer, Cham, Heidelberg

    Google Scholar 

  • Guttierez M, Gracen VF, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300

    Article  Google Scholar 

  • Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44:241–247

    Article  PubMed  Google Scholar 

  • Hattersley PW, Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheats and PCR (“Kranz”) sheaths. Protoplasma 109:371–401

    Article  Google Scholar 

  • Henslow G (1895) The origin of plant-structures by self-adaptation to the environment. Kegan Paul, Trench, Trübner & Co, Ltd, Paternoster House, Charing Cross Road, London

    Google Scholar 

  • Jacobs SWL (2001) Review of leaf anatomy and ultrastructure in the Chenopodiaceae (Caryophyllales). J Torrey Bot Soc 128:236–253

    Article  Google Scholar 

  • Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164(6):959–986

    Article  CAS  Google Scholar 

  • Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 59–87

    Google Scholar 

  • Kearney TH (1904) Are plants of sea and dunes true halophytes? Bot Gaz 37:424–436

    Article  Google Scholar 

  • Keeley JE, Rundel OW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164(3 Suppl):55–77

    Article  Google Scholar 

  • Kellog EA (1999) Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 Plant biology. Academic, San Diego, pp 411–444

    Chapter  Google Scholar 

  • Kochánková J, Mandák B (2008) Biological flora of Central Europe: Atriplex tatarica L. Perspect Plant Ecol Evol System 10:217–229

    Article  Google Scholar 

  • Laetsch WM (1968) Chloroplast specialization in dicotyledons possessing the C4—dicarboxylic acid pathway of photosynthetic CO2 fixation. Am J Bot 55:875–883

    Article  CAS  Google Scholar 

  • Long SP (1999) Environmental responses. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 215–249

    Chapter  Google Scholar 

  • Long SP, Mason CF (1983) Saltmarsh ecology. Blackie, Glasgow

    Google Scholar 

  • Mcdougall WB (1941) Plant ecology, 3rd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Monteil P (1906) Anatomie compareé de la feuille des Chenopodiacees. Travaux de Laboratoire de Matiere Medicale de l’École Supérieure de Pharmacie de Paris 4:5–156

    Google Scholar 

  • Moser H (1934) Untersuchungen űber die Blattstruktur von Atriplex Arten und ihre Beziehungen zur Systematic. Beih Bot Centralbl 52:378–388

    Google Scholar 

  • Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94(3):362–381

    Article  CAS  PubMed  Google Scholar 

  • Paulsen O (1912) Studies on the vegetation of the Transcaspian lowlands. The second Danish Pamir expedition conducted by Olufsen O, Copenhagen, Gyldendalske Boghandel, Nordisk Forlag

    Google Scholar 

  • Pyankov V, Artyusheva EG, Edwards GE, Black CC Jr, Soltis PI (2001) Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae), based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. Am J Bot 88(7):1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Pyankov VI, Gunin PD, Tsoog S, Black CC (2000) C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123(1):15–31

    Article  CAS  PubMed  Google Scholar 

  • Pyykkö M (1966) The leaf anatomy of East Patagonian xeromorphic plants. Ann Bot Fennici 3(3):453–622

    Google Scholar 

  • Raghavendra AS (1980) Characteristics of plant species intermediate between C3 and C4 pathways of photosynthesis: their focus of mechanism and evolution of C4 syndrome. Photosynthetica 14:271–173

    CAS  Google Scholar 

  • Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of C4 photosynthesis syndrome. Plant Biol 3:202–213

    Article  CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 313–373

    Chapter  Google Scholar 

  • Schimper AFW (1903) Plant geography upon a physiological basis. Clarendon, Oxford

    Book  Google Scholar 

  • Shomer-Ilan A, Beer S, Waisel Y (1975) Suaeda monoica, a C4 plant without typical bundle sheats. Plant Physiol 56:676–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safiallah S, Hamdi SMM, Grigore M-N, Sara J (2017) Micromorphology and leaf ecological anatomy of Bassia halophyte species (Amaranthaceae) from Iran. Acta Biologica Szegediensis 61(1):85–93

    Google Scholar 

  • Takabayashi A, Kishine M, Asada K, Endo T, Sato F (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci USA 102(46):16898–16903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troughton JH, Card KA (1974) Leaf anatomy of Atriplex buchananii. New Zeal J Bot 12:167–177

    Article  Google Scholar 

  • Ueno O, Yoshimura Y, Sentoku N (2005) Variation in the activity of some enzymes of photorespiratory metabolism in C4 grases. Ann Bot 96:863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkens G (1887) Die Flora der aegyptisch-arabischen Wüste auf Grundlage anatomisch-physiologischer Forschungen. Gebrüder, Borntraeger, Berlin

    Google Scholar 

  • Volkens G (1893) Chenopodiaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, 3(1a): 36-91

    Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Pyankov VI, Edwards GE (1999) Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodiaceae). J Exp Bot 50(341):1779–1795

    Article  CAS  Google Scholar 

  • Wang RZ (2007) C4 plants in the deserts of China: occurrence of C4 photosynthesis and its morphological functional types. Photosynthetica 45(2):167–171

    Article  Google Scholar 

  • Warming E (1897) Halophyt-studier. D Kgl Danske Vidensk Selsk Skr 6, Raekke, naturvidenskabeling og mathematisk Afd. VIII 4:173–272

    Google Scholar 

  • Warming E (1909) Oecology of Plants. An introduction to the study of plant-communities. Clarendon, Oxford

    Google Scholar 

  • Wiessner J (1899) Uber die Formen der Anpassung der Blatter an die Lichtstarke. Biol Centralbl 19:1–14

    Google Scholar 

  • Yoshimura Y, Kubota F, Ueno O (2004) Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase. Planta 220:307–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grigore, MN., Toma, C. (2017). Kranz Anatomy. In: Anatomical Adaptations of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-319-66480-4_6

Download citation

Publish with us

Policies and ethics