Skip to main content

Succulence

  • Chapter
  • First Online:

Abstract

Succulence is considered one of the most striking anatomical features involved in salt tolerance in halophytes. Widely found in many halophytic botanical families, it has multiple functions in salt tolerant plants. Succulence is involved in the dilution of salts that tend to accumulate in excess, acts as water reservoir and plays a key-role in metabolic processes from C4 photosynthesis. Succulence builds up as a developed water-storage tissue; in some situations, palisade tissue may contribute to the succulent appearance of leafs—especially in C3 species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    On the micrograph explanation, RO designates that the species have been collected from Romania, while ESP, from Spain.

References

  • Abd Elbar Ola H, Abd El-Maboud MM (2013) Anatomical and physiological responses of three species of Suaeda Forssk. ex Scop. under different habitat conditions. J Appl Sci Res 9(8):5370–5379

    Google Scholar 

  • Abrams L (1944) An illustrated flora of the Pacific States: Washington, Oregon, and California, vol 2. Stanford University, Stanford University Press, California

    Google Scholar 

  • Adriani MJ (1956) Der Wasserhaushalt der Halophyten. In: Ruhland W (ed) Encyclopedia of plant physiology, Water relations of plants, vol 3. Springer, Berlin, pp 902–914

    Google Scholar 

  • Ahmad I, Wainwright SJ (1976) Ecotype differences in leaf surface properties of Agrostis stolonifera from salt marsh, spray zone and inland habitats. New Phytol 76:361–366

    Article  Google Scholar 

  • Anderson CE (1974) A review of structure in several North Carolina salt marsh plants. In: Reimold RJ, Queen WH (eds) Ecology of halophytes. Academic, New York, London, pp 307–344

    Chapter  Google Scholar 

  • Arnold A (1955) Die Bedeutung der Chlorionen für die Pflanze, insbesondere deren physiologische Wirksamkeit; eine monographische Studie mit Ausblicken auf das Halophytenproblem, Botanische Studien, vol 2. Gustav Fischer, Jena

    Google Scholar 

  • Batalin A (1886) Wirkung des Chlornatriums auf die Entwicklung von Salicornia herbacea L. Bull du Congr Intern de Bot et d’Hort de S Petersbourg

    Google Scholar 

  • Baylis GTS (1940–1941) Leaf anatomy of the New Zealand mangroves. Trans Proc Royal Soc New Zeal 70:164–170

    Google Scholar 

  • Bentham G (1858) Handbook of the British flora. Lowell Reeve, London

    Google Scholar 

  • Bernstein L (1961) Osmotic adjustment of plants to saline media. I. Steady State. Am J Bot 48:908–918

    Article  Google Scholar 

  • Bernstein L (1963) Osmotic adjustment of plants to saline media. II. Dynamic phase. Am J Bot 50:360–370

    Article  CAS  Google Scholar 

  • Bickenbach K (1932) Zur Anatomie und Physiologie einiger Strand und Dünenpflanzen. Beitrage zum Halophytenproblem. Beitr Biol Pflanz 19:334–370

    Google Scholar 

  • Biebl R, Kinzel H (1965) Blattbau und Salzhaushalt von Laguncularia racemosa (L.) Gaertn. f. und anderer Mangrovebäume auf Puerto Rico. Österr Bot Zeit 112(1-2):56–93

    Article  CAS  Google Scholar 

  • Black RF (1958) Effects on NaCl on the leaf succulence and area of Atriplex hastata L. Aust J Bot 6:306–321

    Article  Google Scholar 

  • Bowman HHM (1921) Histological variations in Rhizophora mangle. Michigan Acad Sci Rep 22:129–134

    Google Scholar 

  • Boyce SG (1951) Salt hypertrophy in succulent dune plants. Science 114:544–545

    Article  CAS  PubMed  Google Scholar 

  • Camilleri JC, Ribi G (1983) Leaf thickness of mangroves (Rhizophora mangle) growing in different salinities. Biotropica 15:139–141. (abstract)

    Article  Google Scholar 

  • Chapman VJ (1942) The new perspective in the halophytes. Quart Rev Biol 17(4):291–311

    Article  Google Scholar 

  • Chermezon H (1910) Recherches anatomiques sur les plantes littorales. Ann Sci Nat sér 9 Bot 12:117–313

    Google Scholar 

  • Cooke FW (1911) Observations on Salicornia australis. Trans Proc New Zeal Inst 44:349–362

    Google Scholar 

  • Cross BD (1909) Observations on some New Zealand halophytes. Trans Proc New Zeal Inst 42:545–574

    Google Scholar 

  • Dangeard PA (1888) Note sur la gaine foliaire des Salicornieae. Bull Soc Bot France 35:157–160

    Google Scholar 

  • de Bary A (1884) Comparative anatomy of the vegetative organs of the Phanerogams and Ferns. Clarendon, Oxford

    Book  Google Scholar 

  • de Fraine E (1912) The anatomy of the genus Salicornia. Linn J Bot 41:317–346

    Article  Google Scholar 

  • Duval-Jouve M (1868) Des Salicornia de l’Hérault. Observations anatomiques et morphologiques. Bull Soc Bot France 15:132–140

    Google Scholar 

  • Elhalim ME, Abo-Alatta OK, Habib SA, Abd Elbar OH (2016) The anatomical features of the desert halophytes Zygophyllum album L.F. and Nitraria retusa (Forssk.) Asch. Ann of Agric Sci 61(1):97–104

    Google Scholar 

  • Engler A, Drude O (1921) Die Vegetation der Erde, III.2. IX. Die Pflanzenwelt Afrikas insbesondere seiner tropischen Gebiete. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Evenari M (1938) The physiological anatomy of the transpiratory organs and the conducting stems of certain plants typical of the Wilderness of Judaea. J Linn Soc London 51:389–407

    Article  Google Scholar 

  • Fahn A (1963) The fleshy cortex of articulated Chenopodiaceae. J Indian Bot Soc 42(A):39–45

    Google Scholar 

  • Fahn A, Arzee T (1959) Vascularization of articulated Chenopodiaceae and the nature of their fleshy cortex. Am J Bot 46:330–338

    Article  Google Scholar 

  • Flowers TJM, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quart Rev Biol 61(3):313–337

    Article  Google Scholar 

  • Gale J, Poljakoff-Mayber A (1970) Interrelationships between growth and photosynthesis of salt bush (Atriplex halimus L.) grown in saline media. Aust J Biol Sci 23:937–945

    Article  CAS  Google Scholar 

  • Ganong WF (1903) The vegetation of the Bay of Fundy Salt and Diked marshes: an ecological study. Bot Gaz 36(3):161–186. 280–302, 349–367, 429–455

    Article  Google Scholar 

  • Greenway H (1968) Growth stimulation by high sodium chloride concentrations in halophytes. Isr J Bot 17:169–178. (abstract)

    CAS  Google Scholar 

  • Grigore M-N (2008) Introducere în Halofitologie. Elemente de Anatomie Integrativă. Ed. PIM, Iaşi

    Google Scholar 

  • Grigore M-N, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans on Biol and Biomed 12(4):204–218

    Google Scholar 

  • Grigore M-N, Toma C (2008) Ecological anatomy of halophyte species from the Chenopodiaceae family. Advanced topics on mathematical biology and ecology (Proceedings of the 4th WSEAS International Conference on Mathematical Biology and Ecology—MABE ’08, Acapulco, Mexico, January 25–27, 2008), p 62–67.

    Google Scholar 

  • Grigore M-N, Toma C (2010a) Halofitele. Aspecte de anatomie ecologică. Edit. Univ. “Al. I. Cuza”, Iaşi

    Google Scholar 

  • Grigore M-N, Toma C (2010b) A proposal for a new halophytes classification, based on integrative anatomy observations. Muz. Olteniei Craiova. Studii şi Comunicări, Ştiinţele Naturii 26(1):45–50

    Google Scholar 

  • Grigore M-N, Toma C (2010c) Structuri secretoare de săruri la halofite. O abordare integrativă. Edit. Academiei Române, Bucureşti

    Google Scholar 

  • Grigore M-N, Toma C (2011a) Halofitele, o categorie ecologică polimorfă. Între seceta fiziologică a solului şi stresul salin. Revista Botanică (Chişinău) 2(3):38–46

    Google Scholar 

  • Grigore M-N, Toma C (2011b) Observaţii ecologice preliminare referitoare la speci de halofite de la rezervaţia naturală “Valea Ilenei” (Iaşi). Materialele Simpozionului Ştiinţific Internaţional “Rezervaţia Codrii, 40 de ani”, pp 180–183

    Google Scholar 

  • Grigore M-N, Toma C (2014) Integrative ecological notes on halophytes from “Valea Ilenei” (Iaşi) nature reserve. Memoirs of the Scientific Sections of the Romanian Academy 37:19–36

    Google Scholar 

  • Grigore M-N, Boscaiu M, Vicente O (2011a) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotechnol 5(Special Issue 2):12–19

    Google Scholar 

  • Grigore M-N, Toma C, Boscaiu M (2011b) Ecological notes on halophytes species from Mediterranean climate. Lucr Şt (Horticultură), USAMV “Ion Ionescu de la Brad”. Iaşi 54(1):29–34

    Google Scholar 

  • Grigore M-N, Toma C, Ivănescu L (2011c) Anatomical and ecological observations on Mediterranean halophytes: Suaeda Forssk. ex Scop. genus. Lucr Şt (Horticultură), USAMV “Ion Ionescu de la Brad”. Iaşi 54(1):23–28

    Google Scholar 

  • Grigore M-N, Toma C, Boscaiu M, Zamfirache M-M, Ivănescu L (2012a) Anatomical and ecological observations on psammo-halophytes species (Eastern part of Spain). Lucr Şt (Horticultură), USAMV “Ion Ionescu de la Brad”. Iaşi 55(2):19–24

    Google Scholar 

  • Grigore M-N, Toma C, Zamfirache M-M, Ivănescu L (2012b) A survey of anatomical adaptations in Romanian halophytes. Towards an ecological interpretation. Fresen Environ Bull 21(11b):3370–3375

    CAS  Google Scholar 

  • Grigore M-N, Villanueva M, Boscaiu M, Vicente O (2012c) Do halophytes really require salt for their growth and development? An experimental approach. Not Sci Biol 4(2):23–29

    CAS  Google Scholar 

  • Grigore M-N, Toma C, Zamfirache M-M, Ivănescu L, Daraban I (2013) Anatomical and ecological observations in succulent (articulated) halophytes from Chenopodiaceae. Lucr Şt (Horticultură), USAMV “Ion Ionescu de la Brad”. Iaşi 56(2):19–24

    Google Scholar 

  • Grigore M-N, Ivănescu L, Toma C (2014) Halophytes. An integrative anatomical study. Springer, Cham

    Book  Google Scholar 

  • Hajibagheri MA, Hall JL, Flowers TJ (1983) The structure of the cuticle in relation to cuticular transpiration in leaves of the halophyte Suaeda maritima (L.) Dum. New Phytol 94:125–131

    Article  Google Scholar 

  • Halket AC (1928) The morphology of Salicornia—an abnormal plant. Ann Bot (London) 42:523–530

    Google Scholar 

  • Handley JF, Jennings DH (1977) The effect of ions on growth and leaf succulence of Atriplex hortensis var. cupreata. Ann Bot 41:1109–1112

    Article  CAS  Google Scholar 

  • Hayward HE, Long EM (1941) Anatomical and physiological response of the tomato to varying concentrations of sodium chlorides, sodium sulphate and nutrient solution. Bot Gaz 102:437–462

    Article  CAS  Google Scholar 

  • Holtermann C (1907) Der Einfluss des K1imas auf den Bau der Pflanzengewebe. Verlag Von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Hooker JD (1884) The student’s flora of the British Islands. MacMillan & Co, London

    Book  Google Scholar 

  • James L, Kyhos DW (1961) The nature of fleshy shoot of Allenrolfea and allied genera. Am J Bot 48:101–108

    Article  Google Scholar 

  • Jennings DH (1968) Halophytes, succulence and sodium in plants—a unified theory. New Phytol 67:899–911

    Article  CAS  Google Scholar 

  • Jennings DH (1976) The effects of sodium chloride on higher plants. Biol Rev 51:453–486

    Article  CAS  Google Scholar 

  • Jepson WL (1923) A manual of the flowering plants of California. University of California Press, Berkeley

    Google Scholar 

  • Joshi GV, Karekar MD, Gowda CA, Bhosale L (1974) Photosynthetic carbon metabolism and carboxylating enzymes in algae and mangrove under saline conditions. Photosynthetica 8:51–52

    CAS  Google Scholar 

  • Jussieu D (1717) Histoire du Kali d’Alicante. Mém Math Phys Acad Royale Sci Paris:73–78

    Google Scholar 

  • Keller B (1925) Halophyten und xerophyten studien. J Ecol 13:224–261

    Article  Google Scholar 

  • Keller B (1951) Extreme salt resistance of higher plants in nature and the problem of adaptation. In: Selected works: 212–236, Akad. Nauk SSSR, Moskwa. (First published in 1940 in Plant and Environment—Rastyenye y sreda), Akad. Nauk SSSR (in Russian)

    Google Scholar 

  • Lacerda CF, Assis Júnior JO, Filho LCAL, de Oliveira TS, Guimarães VA, Gomes-Filho E, Prisco JT, Bezerra M (2006) Morpho-physiological responses of cowpea leaves to salt stress. Braz J Plant Physiol 18(4):455–465

    Article  Google Scholar 

  • Lagerwerff JV, Eagle HE (1961) Osmotic and specific effects of excess salt on beans. Plant Physiol 36:472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage PM (1890) Recherches expérimentales sur les modifications des feuilles chez les plantes maritimes. Rév Gén Bot 2:55–65. 106–121,163–173

    Google Scholar 

  • Leisle FF (1949) K ekologhii i anatomii galofitov i kserofitov s redutirovanii listiami (Ecology and anatomy of halophytes and xerophytes with reduced leaves). Bot J SSSR 34(3):253–266

    Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy: Consequences for photosynthesis. Plant Physiol 63:700–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiri A, Poljakoff-Mayber A (1970) Effect of various salinity regimes on growth, leaf expansion and transpiration rate of bean plants. Soil Sci 109(1):26–32

    Google Scholar 

  • Mendoza MM (1971) The effects of NaCl on anatomical and physiological processes in Atriplex hastata L. M.S. Thesis. Univ. Utah, Salt Lake City

    Google Scholar 

  • Monteil P (1906) Anatomie comparée de la feuille des Chénopodiacées, Thèse, Ecole Supérieure de Pharmacie, no. 9, Université de Paris.

    Google Scholar 

  • Moquin AA (1831) Premier mémoire sur la famille des Chénopodées. Essai monographique sur le genre Suaeda et sur les Chénopodées les plus voisines. Ann Sci Nat 23:278–325

    Google Scholar 

  • Mullan DP (1931) Observations on the water-storing devices in the leaves of some Indian halophytes. J Indian Bot Soc 10:126–133

    Google Scholar 

  • Muntz PA (1959) A California flora. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Norkrans B, Kylin A (1969) Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. J Bacteriol 100(2):836–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osterhout WJ (1906) On the importance of physiologically balanced solutions for plants. Bot Gaz 42:127–134. (abstract)

    Article  Google Scholar 

  • Pax F (1897) Myrsinaceae, In: Engler A, Prantl K (eds) Die natﺰrlichen Pflanzenfamilien 4(1-2). Leipzig, von Wilhelm Engelmann Verlag, p 84–97

    Google Scholar 

  • Peck ME (1941) A manual of the higher plants of Oregon. Binfords and Mort Publishers, Portland

    Google Scholar 

  • Poljakoff-Mayber A (1975) Morphological and anatomical changes in plants as a response to salinity stress. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, New York, pp 97–117

    Chapter  Google Scholar 

  • Qiu D-L, Lin P, Guo SZ (2007) Effects of salinity on leaf characteristics and CO2/H2O exchange of Kandelia candel (L.) Druce seedlings. J Forest Sci 53(1):13–19

    CAS  Google Scholar 

  • Rao GC, Basha SKM, Rao GR (1981) Effect of sodium chloride salinity on amount and composition of epicuticular wax and cuticular transpiration rate in peanut Arachis hypogaea. Indian J Exp Biol 19:880–881

    CAS  Google Scholar 

  • Reinders-Gouwentak CA (1953) Sonneratiaceae and other mangrove—swamp families, anatomical structure and water relations. Fl Males 1(4):513–515

    Google Scholar 

  • Repp G (1939) Ökologische Untersuchungen im Halophytengebiet am Neusiedler See. Jahrb f wiss Bot 88(4):554–632

    Google Scholar 

  • Sabnis TA (1920) The physiological anatomy of the plants of the Indian Desert. J Indian Bot 1(6-7):183–205

    Google Scholar 

  • Sabnis TA (1921) The physiological anatomy of the plants of the Indian Desert. J Indian Bot 2(4–5):93–115

    Google Scholar 

  • Schimper AFW (1891) Die Indo-Malayische Strandflora. Bot Mit Trop 3:1–204

    Google Scholar 

  • Schimper AFW (1898) Rhizophoraceae. In: Engler A, Prantl K (ed by) Die natürlichen Pflanzenfamilien, Leipzig, Verlag von Wilhelm Engelmann, III(7–8):42–56

    Google Scholar 

  • Schimper AFW (1903) Plant Geography upon a physiological basis. Clarendon, Oxford

    Book  Google Scholar 

  • Schischkin BK (1936) Chenopodiaceae. In: Komarov L (ed) Flora of the U.R.S.S, vol 6. Izdatel’stvo Akademii Nauk SSSR, Moskva, Leningrad, pp 1–354

    Google Scholar 

  • Schratz E (1934) Beitrage zur Biologie der Halophyten. Jahrb F wiss Bot 80:112–142

    CAS  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant Ecology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Shennan R, Macrobbie AC (1987) Salt tolerance in Aster tripolium. I. The effect of salinity on growth. Plant Cell Environ 10:59–65

    Article  CAS  PubMed  Google Scholar 

  • Shmueli E (1948) The water balance of some plants of the Dead Sea salines. Palest J Bot (Jerusalem ser) 4:117–142

    CAS  Google Scholar 

  • Smith JAC, Popp M, Lüttge U, Cram WJ, Diaz M, Griffiths H, Lee HSJ, Medina E, Schäfer C, Stimmel K-H, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. VI. Water relations and gas exchange of mangroves. New Phytol 111:293–307

    Article  Google Scholar 

  • St Omer L, Schlesinger WH (1980a) Regulation of NaCl in Jaumea carnosa (Asteraceae), a salt marsh species, and its effect on leaf succulence. Am J Bot 67:1445–1454

    Google Scholar 

  • St Omer L, Schlesinger WH (1980b) Field and greenhouse investigations of the effect of increasing salt stress on the anatomy of Jaumea carnosa, a salt marsh species. Am J Bot 67:1455–1465

    Article  Google Scholar 

  • Stace CA (1966) The use of epidermal characters in phylogenetic considerations. New Phytol 65:304–318

    Article  Google Scholar 

  • Stocker O (1928) Das Halophytenproblem. Ergeb Biol 3:265–353

    Article  Google Scholar 

  • Stocker O (1933) Salzpflanzen. Handb Naturwiss 8:699–712

    Google Scholar 

  • Storey R, Wyn Jones RG (1979) Response of Atriplex spongiosa and Suaeda monoica to salinity. Plant Physiol 63:156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strogonov BP (1962) Fiziologhiceskie osnovy soleustocivosti rastenij (Physiological basis of salt tolerance of plants). Akademia Nauk SSSR, Moskva

    Google Scholar 

  • Strogonov BP (1964) Physiological basis of salt tolerance of plants (as affected by various types of salinity). Akad. Nauk. SSSR. Transalted from Russian, Israel Progr. Sci. Transl., Jerusalem.

    Google Scholar 

  • Toma C, Flenchea-Teodorescu G, Răşcanu S, Zaharia M (1979) Trăsăturile anatomo-ecologice ale unor plante litorale (Cakile maritima Scop. şi Eryngium maritium L.). Culegere de Stud. şi artic. de Biologie, Univ. “Al.I.Cuza” Iaşi (Grăd. Bot.) (Lucrările simpozionului “120 de ani de la înființarea la Iași a primei grădini botanice din România”) 1:273–287

    Google Scholar 

  • Tullin V (1954) Response of sugar beet to common salt. Physiol Plant 7:810–834

    Article  CAS  Google Scholar 

  • Udovenko GV, Gradchaninova OD, Semushina LA (1970) Morphological and anatomical changes in wheat leaves and roots with increasing soil salinity. Bot J 55:931–937

    CAS  Google Scholar 

  • Van Eijk M (1939) Analyse der Wirkung des NaCl auf die Entwicklung Sukkulenze und Transpiration bei Salicornia herbacea, sowie Untersuchungen über den Einfluss der Salzaufnahme auf die Wurzelatmung bei Aster tripolium. Rec Trav Bot Neerl 36:559–657

    Google Scholar 

  • Volkens G (1887) Die Flora der aegyptisch-arabischen Wueste auf Grundlage anatomisch-physiologischer Forschungen. Gebrüder, Borntraeger, Berlin

    Google Scholar 

  • Volkens G (1893) Chenopodiaceae. In: Engler A, Prantl K (ed by) Die natürlichen Pflanzenfamilien, Leipzig, Verlag von Wilhelm Engelmann., III. Teil. 1a: 36–91

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic, New York, London

    Google Scholar 

  • Walter H (1937) Die Ökologishen Verhältnisse in der Namib Nebelwüste (Südwestafrika). Jahrb f wiss Bot 84:58–219

    Google Scholar 

  • Walter H, Steiner M (1936) Die Őkologie der Ostafrikanischen Mangroven. Zeitschrift Bot 30:65–193

    Google Scholar 

  • Warming E (1890) Botaniske exkursioner. 1. Fra Vesterhavskystens Marskegne. Vidensk Meddel Fra D naturh Foren Kjøben V(1):206–239

    Google Scholar 

  • Warming E (1891) Botaniske exkursioner. 2. De psammophile Formationer i Danmark. Vidensk Meddel Fra D naturh Foren Kjøben V(3):153–202

    Google Scholar 

  • Warming E (1897) Halophyt-studier. D Kgl Danske Vidensk Selsk. Skr, 6, Raekke, naturvidenskabeling og mathematisk Afd. VIII 4:173–272

    Google Scholar 

  • Warming E (1906) Dansk Plantevaekst. 1. Strandvegetation, Gyldendalske Boghandel Nordisk Forlag, København Kristiania.

    Google Scholar 

  • Warming E (1909) Oecology of Plants. An introduction to the study of plant-communities. Clarendon, Oxford

    Google Scholar 

  • Werner A, Stelzer R (1990) Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell Environ 13:243–255

    Article  CAS  Google Scholar 

  • Williams MC (1960) Effect of sodium and potassium salts on growth and oxalate content of Halogeton. Plant Physiol 35:500–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima L. Dum.: Evaluation of the effect of salinity upon growth. J Exp Bot 31:1171–1183. (abstract)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grigore, MN., Toma, C. (2017). Succulence. In: Anatomical Adaptations of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-319-66480-4_3

Download citation

Publish with us

Policies and ethics