Skip to main content

Recognition of Indoors Activity Sounds for Robot-Based Home Monitoring in Assisted Living Environments

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10459))

Included in the following conference series:

Abstract

In this paper we present a methodology for the recognition of indoors human activities using microphone for robotic applications on the move. In detail, a number of classification algorithms were evaluated in the task of home sound classification using real indoors conditions and different realistic setups for recordings of sounds from different locations - rooms. The evaluation results showed the ability of the methodology to be used for monitoring of home activities in real conditions with the best performing algorithm being the support vector machine classifier with accuracy equal to 94.89%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Do, H.M., Sheng, W., Liu, M.: Human-assisted sound event recognition for home service robots. Robot. Biomimetics 3(1), 1 (2016)

    Article  Google Scholar 

  2. D’Arcy, T., Stanton, C., Bogdanovych, A.: Teaching a robot to hear: a real-time on-board sound classification system for a humanoid robot. In: Proceedings of Australasian Conference on Robotics and Automation (2013)

    Google Scholar 

  3. Do, H.M., Sheng, W., Liu, M., Zhang, S.: Context-aware sound event recognition for home service robots. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 739–744. IEEE (2016)

    Google Scholar 

  4. Politi, O., Mporas, I., Megalooikonomou, V.: Human motion detection in daily activity tasks using wearable sensors. In: 2014 Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), pp. 2315–2319. IEEE (2014)

    Google Scholar 

  5. Naranjo-Hernández, D., Roa, L.M., Reina-Tosina, J., Estudillo-Valderrama, M.A.: Som: a smart sensor for human activity monitoring and assisted healthy ageing. IEEE Trans. Biomed. Eng. 59, 3177–3184 (2012)

    Article  Google Scholar 

  6. Politi, O., Mporas, I., Megalooikonomou, V.: Comparative evaluation of feature extraction methods for human motion detection. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Sioutas, S., Makris, C. (eds.) AIAI, pp. 146–154. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44722-2_16

  7. Ince, N.F., Min, C.-H., Tewfik, A.H.: Integration of wearable wireless sensors and non-intrusive wireless in-home monitoring system to collect and label the data from activities of daily living. In: 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, pp. 28–31. IEEE (2006)

    Google Scholar 

  8. Uslu, G., Altun, Ö., Baydere, S.: A Bayesian approach for indoor human activity monitoring. In: 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp. 324–327. IEEE (2011)

    Google Scholar 

  9. Thiruvengada, H., Srinivasan, S., Gacic, A.: Design and implementation of an automated human activity monitoring application for wearable devices. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 2252–2258. IEEE (2008)

    Google Scholar 

  10. Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15, 1321–1330 (2015)

    Article  Google Scholar 

  11. Yan, L., Bae, J., Lee, S., Roh, T., Song, K., Yoo, H.-J.: A 3.9 Mw 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J. Solid-State Circuits 46, 353–364 (2011)

    Article  Google Scholar 

  12. Ravanshad, N., Rezaee-Dehsorkh, H., Lotfi, R., Lian, Y.: A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Inform. 18, 183–192 (2014)

    Article  Google Scholar 

  13. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10, 119–128 (2006)

    Article  Google Scholar 

  14. Leonov, V.: Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13, 2284–2291 (2013)

    Article  Google Scholar 

  15. Gabriel, I.V., Anghelescu, P.: Vibration monitoring system for human activity detection. In: 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. AE-41–AE-44. IEEE (2015)

    Google Scholar 

  16. Shad, A., Rodriguez-Villegas, E.: Proof of concept of a shoe based human activity monitor. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6398–6401. IEEE (2012)

    Google Scholar 

  17. Zhou, Z., Dai, W., Eggert, J., Giger, J.T., Keller, J., Rantz, M., He, Z.: A real-time system for in-home activity monitoring of elders. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6115–6118 (2009)

    Google Scholar 

  18. Amiri, S.M., Pourazad, M.T., Nasiopoulos, P., Leung, V.C.: Non-intrusive human activity monitoring in a smart home environment. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications & Services (Healthcom), pp. 606–610. IEEE (2013)

    Google Scholar 

  19. Zouba, N., Bremond, F., Thonnat, M.: An activity monitoring system for real elderly at home: validation study. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 278–285. IEEE (2010)

    Google Scholar 

  20. Zhou, Z., Chen, X., Chung, Y.-C., He, Z., Han, T.X., Keller, J.M.: Activity analysis, summarization, and visualization for indoor human activity monitoring. IEEE Trans. Circuits Syst. Video Technol. 18, 1489–1498 (2008)

    Article  Google Scholar 

  21. Medjahed, H., Istrate, D., Boudy, J., Dorizzi, B.: Human activities of daily living recognition using fuzzy logic for elderly home monitoring. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2009, pp. 2001–2006. IEEE (2009)

    Google Scholar 

  22. Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom activity monitoring based on sound. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 47–61. Springer, Heidelberg (2005). doi:10.1007/11428572_4

    Chapter  Google Scholar 

  23. Vuegen, L., Van Den Broeck, B., Karsmakers, P., Vanrumste, B.: Automatic monitoring of activities of daily living based on real-life acoustic sensor data: a preliminary study. In: Fourth Workshop on Speech and Language Processing for Assistive Technologies (SLPAT) Proceedings, pp. 113–118. Association for Computational Linguistics (ACL) (2013)

    Google Scholar 

  24. Stork, J.A., Spinello, L., Silva, J., Arras, K.O.: Audio-based human activity recognition using non-Markovian ensemble voting. In: RO-MAN, pp. 509–514. IEEE (2012)

    Google Scholar 

  25. Bian, X., Abowd, G.D., Rehg, J.M.: Using Sound Source Localization to Monitor and Infer Activities in the Home. Georgia Institute of Technology, Atlanta (2004)

    Google Scholar 

  26. Marsh, A., Biniaris, C., Velentzas, R., Leguay, J., Ravera, B., Lopez-Ramos, M., Robert, E.: A multi-modal health and activity monitoring framework for elderly people at home. In: Yogesan, K., Bos, L., Brett, P., Gibbons, M.C. (eds.) Handbook of Digital Homecare, pp. 287–298. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01387-4_14

  27. Motamed, C., Lherbier, R., Hamad, D.: A multi-sensor validation approach for human activity monitoring. In: 2005 8th International Conference on Information Fusion, 8 pp. IEEE (2005)

    Google Scholar 

  28. Tao, L., Burghardt, T., Hannuna, S., Camplani, M., Paiement, A., Damen, D., Mirmehdi, M., Craddock, I.: A comparative home activity monitoring study using visual and inertial sensors. In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), pp. 644–647. IEEE (2015)

    Google Scholar 

  29. Ketabdar, H., Qureshi, J., Hui, P.: Motion and audio analysis in mobile devices for remote monitoring of physical activities and user authentication. J. Location Based Serv. 5, 182–200 (2011)

    Article  Google Scholar 

  30. Boersma, P., Weenink, D.: Praat: Doing Phonetics by Computer (Version 5.3.51) [Computer Program] (2009). Accessed 1 May 2009

    Google Scholar 

  31. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasitthichai Naronglerdrit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Naronglerdrit, P., Mporas, I. (2017). Recognition of Indoors Activity Sounds for Robot-Based Home Monitoring in Assisted Living Environments. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science(), vol 10459. Springer, Cham. https://doi.org/10.1007/978-3-319-66471-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66471-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66470-5

  • Online ISBN: 978-3-319-66471-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics