Skip to main content

Collective Spin States Coupled to a Single Mode Cavity—Strong Coupling

  • Chapter
  • First Online:
Book cover Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles

Part of the book series: Springer Theses ((Springer Theses))

  • 593 Accesses

Abstract

In the theoretical part of this thesis I described in great detail the electromagnetic field of single mode cavities and the interaction with the magnetic moment of single or ensembles of electron spins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Rempe, R.J. Thompson, R.J. Brecha, W.D. Lee, H.J. Kimble, Optical bistability and photon statistics in cavity quantum electrodynamics. Phys. Rev. Lett. 67(13), 1727–1730 (1991)

    Article  ADS  Google Scholar 

  2. R.J. Thompson, G. Rempe, H.J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68(8), 1132–1135 (1992)

    Article  ADS  Google Scholar 

  3. R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer, Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107(6), 060502 (2011)

    Article  ADS  Google Scholar 

  4. R. Amsüss. Strong coupling of an NV spin ensemble to a superconducting resonator. PhD Thesis, (TU Wien, Austia, 2012)

    Google Scholar 

  5. Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105(14), 140502 (2010)

    Article  ADS  Google Scholar 

  6. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M. Everitt, K.S. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011)

    Google Scholar 

  7. D.I. Schuster, A.P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J.J.L. Morton, H. Wu, G.A.D. Briggs, B.B. Buckley, D.D. Awschalom, R.J. Schoelkopf, High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105(14), 140501 (2010)

    Article  ADS  Google Scholar 

  8. S. Probst, H. Rotzinger, S. Wünsch, P. Jung, M. Jerger, M. Siegel, A.V. Ustinov, P.A. Bushev, Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110(15), 157001 (2013)

    Article  ADS  Google Scholar 

  9. C.W. Zollitsch, K. Mueller, D.P. Franke, S.T.B. Goennenwein, M.S. Brandt, R. Gross, H. Huebl, High cooperativity coupling between a phosphorus donor spin ensemble and a superconducting microwave resonator. Appl. Phys. Lett. 107(14):142105, (October 2015). ISSN 0003-6951, 1077-3118

    Google Scholar 

  10. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 349(6246):405–408 (July 2015). ISSN 0036-8075, 1095-9203

    Google Scholar 

  11. M. Tavis, F.W. Cummings, Exact solution for an n-molecule–radiation-field hamiltonian. Phys. Rev. 170(2), 379–384 (1968)

    Article  ADS  Google Scholar 

  12. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  13. J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103(4), 043603 (2009)

    Article  ADS  Google Scholar 

  14. A. İmamoğlu, Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102(8), 083602 (2009)

    Article  Google Scholar 

  15. H. Primakoff, T. Holstein, Many-body interactions in atomic and nuclear systems. Phys. Rev. 55(12), 1218–1234 (1939)

    Article  ADS  MATH  Google Scholar 

  16. K. Sandner, H. Ritsch, R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, J. Schmiedmayer, J. Majer, Strong magnetic coupling of an inhomogeneous nitrogen-vacancy ensemble to a cavity. Phys. Rev. A 85(5), 053806 (2012)

    Article  ADS  Google Scholar 

  17. D.O. Krimer, S. Putz, J. Majer, S. Rotter, Non-Markovian dynamics of a single-mode cavity strongly coupled to an inhomogeneously broadened spin ensemble. Phys. Rev. A 90(4), 043852 (2014)

    Google Scholar 

  18. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Quantum rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76(11), 1800–1803 (1996)

    Article  ADS  MATH  Google Scholar 

  19. T.B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, C. Weisbuch, Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity. Phys. Rev. B 50(19), 14663–14666 (1994)

    Article  ADS  Google Scholar 

  20. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014):200–203, (November 2004). ISSN 0028-0836

    Google Scholar 

  21. J. Gripp, S.L. Mielke, L.A. Orozco, Evolution of the vacuum Rabi peaks in a detuned atom-cavity system. Phys. Rev. A 56(4), 3262–3273 (1997)

    Article  ADS  Google Scholar 

  22. P.D. Drummond, Optical bistability in a radially varying mode. IEEE J. Quantum Electron. 17(3):301–306, (March 1981). ISSN 0018-9197

    Google Scholar 

  23. M.J. Martin, D. Meiser, J.W. Thomsen, J. Ye, M.J. Holland, Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization. Phys. Rev. A, 84(6):063813, (December 2011)

    Google Scholar 

  24. I. Diniz, S. Portolan, R. Ferreira, J.M. Gérard, P. Bertet, A. Auffèves, Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84(6), 063810 (2011)

    Article  ADS  Google Scholar 

  25. Y. Kubo, I. Diniz, A. Dewes, V. Jacques, A. Dréau, J.-F. Roch, A. Auffeves, D. Vion, D. Esteve, P. Bertet, Storage and retrieval of a microwave field in a spin ensemble. Phys. Rev. A 85(1), 012333 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Putz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Putz, S. (2017). Collective Spin States Coupled to a Single Mode Cavity—Strong Coupling . In: Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-66447-7_5

Download citation

Publish with us

Policies and ethics