Skip to main content

Climate Change, Genetic Diversity, and Conservation of Paleoendemic Redwoods

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 17))

Abstract

Global climate has always been changing in the past and will continue to change in the future. However, according to current predictions, the climate has been changing more rapidly and has impacted species distributions, requiring strategies to conserve genetic resources in forest trees. Conservation of genetic resources of four endemic redwoods, Sequoia sempervirens, Sequoiadendron giganteum, Metasequoia glyptostroboides, and Fitzroya cupressoides, from the family Cupressaceae are discussed in this paper. All four genera are monospecific, share a number of common phenotypic traits, including red wood, and are threatened in their natural habitats. Although fossil history of the redwoods can be traced back to more than 100 million years ago in the Cretaceous Period, these redwoods were widespread during the Tertiary period (7–65 million years ago) in the northern and southern hemisphere. Following the geological upheavals and climate changes, the redwoods have become living fossils or paleoendemics, and are now restricted in their native narrow ranges in USA, China, and South America. Therefore, it is necessary to conserve the genetic resources in these paleoendemic redwoods and, at the same time, maintain an appropriate level of genetic diversity in the redwood species and populations for their future survival. In situ and ex situ strategies for the conservation of genetic resources of redwoods are discussed in this paper. Although these redwoods are protected in the national parks, reserves, and in privately owned forests in their habitats, it would be desirable to conserve them in new ex situ reserves, and by other ex situ strategies involving biotechnological approaches to preserve seed, tissues, and DNA in gene banks for future exploitations in the face of climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams RP (1997) Conservation of DNA: DNA banking. In: Callow JA, Ford-Lloyd BV, H. J. Newbury HJ (eds) Biotechnology and plant genetic resources, conservation and Use. CABI Publishing, London, pp 163–174

    Google Scholar 

  • Ahuja MR (1986) Storage of forest tree germplasm in liquid nitrogen (-196°C). Silvae Genet 35:249–251

    Google Scholar 

  • Ahuja MR (1987) In vitro propagation of poplars and aspens. In: Bongs JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 3. Martinus Nijhoff Publishers, Dordrecht, pp 207–223

    Google Scholar 

  • Ahuja MR (1989) Storage of forest tree germplasm at sub-zero temperatures. In: Dhawan V (ed) Application of biotechnology in forestry and horticulture. Plenum Press, New York, pp 215–228

    Chapter  Google Scholar 

  • Ahuja MR (1993) Micropropagation of woody plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ahuja MR (1994) Reflections on germplasm preservation of trees. In: Pardos JA, Ahuja MR, Rosello RE (eds) Biotechnology of trees. Investgacion Agraria Sistemas y Recursos Forestales, Madrid, pp 227–233

    Google Scholar 

  • Ahuja MR (1996) Micropropagation and field testing of frost-tolerant Sequoia sempervirens genotypes. In: LeBlanc J (ed) Proceeding of the conference on coast redwood forest ecology and management. Humboldt State University, Arcata, pp 153–155

    Google Scholar 

  • Ahuja MR (1999) Biotechnology in forest tree gene banks. In: Edwards DGW, Naithani SC (eds) Seed and nursery technology of forest trees. New Age International (P) Limited Publishers, New Delhi, pp 23–36

    Google Scholar 

  • Ahuja MR (2005) Polyploidy in gymnosperms: revisited. Silvae Genet 54:59–69

    Google Scholar 

  • Ahuja MR (2009) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165:5–19

    Article  Google Scholar 

  • Ahuja MR (2011) Strategies for conservation of germplasm in endemic redwoods in the face on climate change: a review. Plant Genet Resour 9:411–422

    Article  Google Scholar 

  • Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens (D.Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet 51:93–100

    Google Scholar 

  • Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genet 54:126–137

    Google Scholar 

  • Aitkin-Christie J, Singh AP (1987) Cold storage of tissue cultures. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 1. Martinus Nijhoff Publishers, Dordrecht, pp 285–304

    Chapter  Google Scholar 

  • Aitkin SN, Yeaman S, Holiday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes of tree populations. Evol Appl 1:95–111

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1494

    Article  CAS  PubMed  Google Scholar 

  • Allnutt TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol Ecol 8:975–987

    Article  CAS  PubMed  Google Scholar 

  • Anderson JT, Inouye DW, McKinney AM, Colauti RI, Mitchell-Olds (2012) Pheotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc R Soc B 279:3843–3852

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaud Y, Franclet A, Tranvan H, Jacques M (1993) Micropropagation and rejuvenation of Sequoia sempervirens (Lamb) Endl.): a review. Annales des Sciences Forestieres 50:273–295

    Article  Google Scholar 

  • Ball EA (1950) Differentiation in a callus culture of Sequoia sempervirens. Growth 14:295–325

    CAS  PubMed  Google Scholar 

  • Ball EA, Morris DM, Reydelius JA (1978) Cloning of Sequoia sempervirens from mature trees through tissue culture. Round Table Conference. In Vitro Multiplication of Woody Species, Gamboloux, Belgium, pp. 181–226

    Google Scholar 

  • Battles JJ, Robards T, Das A et al (2008) Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of Sierra Nevada, California. Clim Change 87(Supplement 1):S193–S213

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard C, Leclerc C, Leroy B et al (2014) Vulnerability of biodiversity hotspots to global change. Global Ecol Biogeogr. doi:10.1111/geb.12228

    Google Scholar 

  • Boe KN (1974) Sequoia sempervirens (D.Don) Endl. - Redwood. In: Schopmeyer CS (ed) Seeds of woody plants in the United States. Forest Service, USDA, Washington DC, pp 764–766

    Google Scholar 

  • Bon MC, Monteuuis O (1991) Rejuvenation of a 100-year old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenesis and morphological arguments. Physiol Plant 81:111–115

    Article  Google Scholar 

  • Bon MC, Riccari F, Monteuuis O (1994) Influence of phase change within a 90-year old Sequoia sempervirens on its in vitro organogenic capacity and protein patterns. Trees 8:283–287

    Article  Google Scholar 

  • Bonner FT (1990) Storage of seeds: potential and limitations for germplasm conservation. For Ecol Manage 35:35–43

    Article  Google Scholar 

  • Botkin DB, Saxe H, Arauju MB et al (2007) Forcasting the effects of global warming on biodiversity. Bioscience 57:227–236

    Article  Google Scholar 

  • Boulay M (1978) Multiplication rapide du Sequoia sempervirens en culture in vitro. Annales AFOCEL, pp 37–66

    Google Scholar 

  • Brinegar C (2012) Rangewide genetic variation in coast redwood populations at a chloroplast microsatellite locus. In: Standiford RB, Weller TJ, Piirto DD, Stuart JD (eds) Proceedings of the coast redwood forests in a changing California: a symposium for scientists and managers. USDA, Pacific Southwest Research Station, Gen Tech Rep PSW-GTR-238, Albany, CA, pp 241–249

    Google Scholar 

  • Brinegar C, Bruno D, Kirkbride R, Glavas S, Udransky U (2007) Applications of redwood genotyping by using microsatellite markers. In: Standiford RB, Giusti GA, Valachovic Y, et al (eds) Proceedings of the redwood region forest science symposium: what does the future hold? USDA, Forest Service, Gen Tech Rep PSW-GTR-194, Albany, CA, pp 47–56

    Google Scholar 

  • Chaney RW (1950) A revision of fossil Sequoia and Taxodium in western North Amerixca based on the recent discovery of Metasequoia. Trans Am Philos Soc N Ser 40:171–263

    Article  Google Scholar 

  • Chen XY, Li YY, Wu TY, Zhang X, Lu HP (2003) Size-class differences in genetic structure of Metasequoia glyptostroboides Hu et Cheng (Taxodiaceae) plantations in Shanghai. Silvae Genet 52:107–109

    Google Scholar 

  • Chu K, Cooper SC (1999) An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Arnoldia 59:40–46

    Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and flowering time in annual crops. J. Exptl Bot 60:2529–2539

    Article  CAS  Google Scholar 

  • Cruz-Cruz CA, Gonzalez-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95

    Article  Google Scholar 

  • Cui MY, Yu S, Liu M, Li YY (2010) Isolation and characterization of polymorphic microsatellite markers in Metasequoia glyptostoboides (Taxodiaceae). Conserv Genet Resour 2:19–21

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Article  Google Scholar 

  • Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to climate change. Ecology 86:1704

    Article  Google Scholar 

  • Douhovnikoff V, Dodd RS (2011) Linkage divergence in coast redwoos (Sequoia sempervirens), detected by a new set of nuclear microsatellite loci. Am Midl Nat 165:22–37

    Article  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plants 40:427–433

    Article  Google Scholar 

  • Evarts J, Popper M (2001) Conservation and management of redwood forests. In: Evarts J, Popper M (eds) Coast redwood a natural and cultural history. Cachuma Press, Los Olivos, CA, pp 165–205

    Google Scholar 

  • FAO (2014a) The state of world’s forest genetic resources. Rome

    Google Scholar 

  • FAO (2014b) Genebank standards for plant genetic resources for food and agriculture. Rev. ed. Rome

    Google Scholar 

  • Fernandez M, Hamilton HH, Kueppers LM (2015) Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood. Global Change Biol. doi:10.111/geb13027

    Google Scholar 

  • Fins L, Libby WJ (1982) Population variation in Sequoiadendron: seed and seedling studies, vegetative propagation and isozyme variation. Silvae Genet 31:102–110

    Google Scholar 

  • Fins L, Libby WJ (1994) Genetics of giant sequoia. USDA Forest Serv Gen Tech Rep PSW 151:65–68

    Google Scholar 

  • Foden W, Mace G, Vié JC et al (2008) Species susceptibility to climate change impacts. In: Vié J-C, Hilton-Taylor C, Stuart SN (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland, pp 1–11

    Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationship within Cupressaceae sensu latu: a combined morphological and molecular approach. Am J Bot 87:1044–1057

    Article  CAS  PubMed  Google Scholar 

  • Gaira KS, Rawal RS, Rawat B, Bhatt ID (2014) Impact of climate chanhe on the flowering of Rhododendron arboretum in central Himalaya, India. Curr Sci 106:1735–1738

    Google Scholar 

  • Geburek T, Konrad H (2007) Why the conservation of forest genetic resources has not worked. Conserv Biol 22:267–274

    Article  Google Scholar 

  • Gonzalez-Arnao MT, Mratinez-Montero ME, Cruz-Cruz CA, Engelmann F (2014) Advances in cryogenic techniques for the long-term preservation of plant biodiversity. In: Ahuja MR, Ramawat KG (eds) Biotechnology and biodiversity. Springer, Berlin, pp 129–170

    Google Scholar 

  • Guinon M, Larson JB, Spethmann W (1982) Frost resistance and early growth of Sequoiadendron giganteum seedlings of different origin. Silvae Genet 31:173–178

    Google Scholar 

  • Hair JB (1968) The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). NZ J Bot 6:277–284

    Article  Google Scholar 

  • Halmagyi A, Deliu C (2011) Conservation of redwood (Sequoia sempervirens (D.Don) Endl.) shoot apices by encapsulation-dehydration. Contributti Botanice 46:117–125

    Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manage 197:323–335

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Boyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95–124

    Article  Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected areas needs in a changing climate. Front Ecol Environ 5:131–138

    Article  Google Scholar 

  • Hartesfeldt RJ (1969) Sequoia in Europe with a review of their discovery and their resultant importation into Europe. Final Contract Report to the National Park Service. Contract # 14-10-0434, 22 p

    Google Scholar 

  • Hartesveldt RJ, Harry HT, Schellhammer HS, Stecker RR (1975) The giant sequoia of the Sierra Nevada. U.S. Department of Interior, National Park Service, Washington, D.C., p 180

    Google Scholar 

  • Hattemer HH (1995) Concepts and requirements in the conservation of forest genetic resources. Forest Genet 2:125–134

    Google Scholar 

  • Heald RC (1986) Management of giant sequoia at Blodgett Forest Research Station. USDA Gen Tech Rep PSW-95, Berkeley, CA, pp 37–39

    Google Scholar 

  • Hendricks DR, Søndergaard P (1998) Metasequoia glyptostroboides 50 years out of China. Observations from the United States and Denmark. Dansk Dendrologisk Årsskrift 16:6–24

    Google Scholar 

  • Hoffmann AA, Willi Y (2008) Detecting genetic response to environmental change. Nat Rev Genet 9:421–432

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez I, Clark JS, Dietze MC et al (2006) Predicting biodiversity change: outside the climate envelop, beyond the species area curve. Ecology 87:1896–1906

    Article  PubMed  Google Scholar 

  • Iler AM, Høye TK, Inouye DW, Schmidt NM (2013) Nonlinear flowering responses to climate: are species approaching their limits of phonological change? Phil Trans R Soc B 368:20120489

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. Summary for policymakers. www.ipcc.ch

  • IPCC (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Summary for policymakers. www.ipcc.ch

  • IUCN (2013) The IUCN list of threatened species. http://www.iucnredlist.org/details/30926/0

  • Iverson LR, Prasad AM, Schwartz MW (2005) Predicting potential changes in suitable habitat and distribution by 2100 for tree species in the eastern United States. J Agric Meteorol 61:29–37

    Article  Google Scholar 

  • Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 Eastern US tree species under six climate scenarios. For Ecol Manage 254:390–406

    Article  Google Scholar 

  • Iverson LR, McKenzie D (2013) Tree-species range shifts in the changing climate: detecting, modeling, assisting. Landscape Ecol 28:879–889

    Article  Google Scholar 

  • Javeline D, Hellmann JJ, Cornejo RC, Shufeldt G (2013) Expert opinion on climate change and threats to biodiversity 63:666–673

    Google Scholar 

  • Jin Y, Bi Q, Guan W, Mao JF (2015) Development of 23 novel polymorphic EST-SSR markers for the endangered relict conifer Metasequoia glyptostroboides. Appl Plant Sci 3(9):150038

    Article  Google Scholar 

  • Johnson LC (1974) Metasequoia glyptostroboides Hu and Cheng - Dawn Redwood. In: Schopmeyer CS (ed) Seeds of woody plants in the United States. Forest Service, USDA, Washington DC, pp 540–542

    Google Scholar 

  • Johnstone JA, Dawson TE (2010) Climate context and ecological implications of summer fog decline in the cost redwood region. Proc Natl Acad Sci USA 107:4533–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AE, Goulden ML (2007) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105:11823–11826

    Article  Google Scholar 

  • Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24–39

    Article  Google Scholar 

  • Knigge W (1994) Giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) in Europe. USDA Gen Tech Rep PSW 151:28–48

    Google Scholar 

  • Korban SS, Sul IW (2007) Micropropagation of coast redwood (Sequoia sempervirens) In: Jain SM, Häggman (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 23–32

    Google Scholar 

  • Kuser JE (1981) Redwoods around the world. Am Forest 87:30–32

    Google Scholar 

  • Kuser JE (1999) Metasequoia glyptostroboides: Fifty years of growth in North America. Arnoldia 59:76–79

    Google Scholar 

  • Kuser J E, Bailly A, Franclet A, Libby WJ et al (1995) Early results of a range-wide provenance test of Sequoia sempervirens. Forest Genetics Resources, FAO, Rome, No. 23:21–25

    Google Scholar 

  • Kuser JE, Sheely DL, Hendricks DR (1997) Genetic variation in two ex situ collections of the rare Metasequoia glyptostroboides (Cupressaceae). Silvae Genet 46:258–264

    Google Scholar 

  • Lara A, Villalba R (1993) A 3,820-year temperature record from alerce tree rings in southern South America. Science 260:1104–1106

    Article  CAS  PubMed  Google Scholar 

  • Ledig FT (1986) Conservation strategies for forest gene resources. For Ecol Manage 14:77–90

    Article  Google Scholar 

  • Ledig FT (1988) The conservation of diversity in forest trees. Bioscience 38:471–479

    Article  Google Scholar 

  • Ledig FT (2012) Climate change and conservation. Acta Slv Hung 8:57–74

    Google Scholar 

  • Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. For Ecol Manage 50:153–169

    Article  Google Scholar 

  • LePage BA, Yand H, Matsumoto M (2005) The evolution and biogeographic history of Metasequoia. In: Le Page BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasdequoia. Springer, Berlin, pp 3–114

    Chapter  Google Scholar 

  • Leng Q, Fan SH, Wang L, Yang H et al (2007) Database of native Metasequoia glyptostroboides trees in China based on new consensus surveys and expeditions. Bull Peabody Mus Nat Hist 48:185–233

    Article  Google Scholar 

  • Li J (1999) Metasequoia: an overview of its phylogeny, reproductive biology, and ecotypic variation. Arnoldia 59:54–59

    Google Scholar 

  • Li L (1987) The origin of Sequoia sempervirens (Taxodiaceae) based on karyotype. Acta Botanica Yunnancia 99:192–197

    Google Scholar 

  • Li YY, Chen XY, Zhang X, Wu TT, Lu HP, Cai YW (2005) Genetic differences between wild and artificial populations of Metasequoia glyptostroboides: implications of species recovery. Conserv Biol 19:224–231

    Article  Google Scholar 

  • Libby WJ (1981) Some observations on Sequoiadendron and Calocedrus in Europe. Calif Forest Forest Prod No(49):1–12

    Google Scholar 

  • Libby WJ, Anekonda TS, Kuser JE (1996) The genetic architecture of coast redwood. In: Leblanc J (ed) Proceeding of the conference on coast redwood forest ecology and management. Humboldt State University, Arcata, pp 147–149

    Google Scholar 

  • Littell JS, Oneil EE, McKenzie D et al (2010) Forest ecosystems, disturbance, and climate change in Washington State, USA. Clim Change 102:129–158

    Article  Google Scholar 

  • Liu C, Xia X, Yin W, Huang L, Zhou J (2006) Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D. Don) Endl.). Plant Cell Rep 25:621–628

    Article  CAS  PubMed  Google Scholar 

  • McKenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchison MF (2007) Potential impacts of climate change on the distribution of North American trees. Bioscience 57:939–948

    Article  Google Scholar 

  • Melchior GH, Hermann S (1987) Differences in growth performance of four provenances of giant sequoia (Sequoiadendron giganteum (Lindl) Buchh.). Silvae Genet 38:65–68

    Google Scholar 

  • Melchior GH, Muhs HJ, Stephan BR (1986) Tactics for forest tree resources in the Federal Republic of Germany. For Ecol Manage 17:73–81

    Article  Google Scholar 

  • Metcalf W (1924) Artificial reproduction of redwood (Sequoia sempervirens). J Forest 22:873–893

    Google Scholar 

  • Millar CI (1993) Conservation of germplasm of forest trees. In: Ahuja MR, Libby WJ (eds) Clonal forestry II. Conservation and application. Springer, Berlin, pp 42–65

    Google Scholar 

  • Moneuuis O (1987) In vitro meristem culture of juvenile and mature Sequoiadendron giganteum. Tree Physiol 3:265–272

    Article  Google Scholar 

  • Monteuuis O (1991) Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenic and morphological arguments. Physiol Plant 81:111–115

    Article  Google Scholar 

  • Monteuuis O, Bon MC (1989) Rejuvenation of a 100 yr old giant sequoia (Sequoiadendron giganteum Buchholz) through in vitro meristem culture. Ann Sci For 46 (Supplement):183s–186s

    Google Scholar 

  • Monteuuis O, Doulbeau S, Verdeil JL (2008) DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees 22:779–784

    Article  CAS  Google Scholar 

  • Noss RF, Strittholt JR, Heilman GE, Frost PA, Sorensen M (2000) Conservation planning in the redwoods region. In: Noss RF (ed) The redwood forest. History, ecology, and conservation of redwoods. Save-the-Redwoods League. Island Press, Washington DC, pp 201–228

    Google Scholar 

  • O’Gorman PA, Schneider T (2009) The extreme basis for increase in precipitation in simulations of the 21st-century climate change. Proc Natl Acad Sci USA 106:14773–14777

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson DF, Roy DF, Walters GA (1990) Sequoia sempervirens (D. Don) Endl. Redwood. In: Burns RM, Honkala BH (eds) Silvics of North America. Vol 1. Conifers. Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington DC, pp 541–551

    Google Scholar 

  • Ornduff R (1998) The Sequoia sempervirens (coast redwood) forest of the pacific coast, USA. In: Lederman AD (ed) Coastally restricted forests.Oxford University Press, New York, pp 221–236

    Google Scholar 

  • Ozudogru EA, Kirdok E, Kaya E, Capuana M, Beneli C, Engelmann F (2011) Cryopreservation of redwood (Sequoia sempervirens (D.Don.) in vitro buds using vitrification-based techniques. CryoLetters 32:99–110

    CAS  PubMed  Google Scholar 

  • Parker T, Donoso C (1993) Natural regeneration of Fitzroya cupressoides in Chile and Argentina. For Ecol Manage 59:63–85

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pautasso M (2013) Forest ecosystems and global change: the case study of insurbia. Annali di Botanica 3:1–29

    Google Scholar 

  • Pearson RG, Stanton JC, Shoemaker KT et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Change 4:217–221

    Article  Google Scholar 

  • Peters RL (1990) Effects of global warming on forests. For Ecol Manage 35:13–33

    Article  Google Scholar 

  • Pitterman J, Stuart SA, Dawson TE, Moreau A (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc Natl Acd Sci USA 109:9647–9652

    Article  Google Scholar 

  • Premoli AC, Kitzberger T, Veblen TT (2000) Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conserv Genet 1:57–66

    Article  CAS  Google Scholar 

  • Premoli AC, Vergara R, Souto CP, Lara A, Newton AC (2003) Lowland valleys shelter the ancient conifer Fitzroya cupressoides in the Central Depression of southern Chile. J Roy Soc NZ 33:623–631

    Article  Google Scholar 

  • Premoli A, Quiroga P, Souto C, Gardner M (2013) Fitzroya cupressoides. The IUCN Red List of Threatened Species 2013: e. T30926A279874

    Google Scholar 

  • Pritchard HW, Moat JF, Ferraz JBS et al (2014) Innovative approaches to the preservation of forest trees. For Ecol Manage 333:88098

    Article  Google Scholar 

  • Quirk J, McDowell NG, Leake JR, Hudson PJ, Beerling DJ (2013) Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am J Bot 100:582–591

    Article  CAS  PubMed  Google Scholar 

  • Rehfeldt GE, Jaquish BC, Sáenz-Romero C et al (2014) Comparative genetic response to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: restoration. For Ecol Managm 324:147–157

    Article  Google Scholar 

  • Rice N, Cordeiro G, Shepherd M et al (2006) DNA banks and their role in facilitating the application of genomics to plant germplasm. Plant Genet Resour 4:64–70

    Article  CAS  Google Scholar 

  • Rogers DL (1997) Inheritance of allozymes from seed tissues of the hexaploid gymnosperm, Sequoia sempervirens (D.Don) Endl. (Coast redwood). Heredity 78:166–175

    Article  CAS  Google Scholar 

  • Rogers DL (1999) Allozyme polymorphisms discriminate among coast redwood (Sequoia sempervirens) siblings. J Hered 90:429–433

    Article  Google Scholar 

  • Rogers DL (2000) Genotypic diversity and clones size in old-growth populations of coast redwood (Sequoia sempervirens). Can J Bot 78:1408–1419

    CAS  Google Scholar 

  • Root TL, MacMynowski DP, Mastrandrea MD, Schneider SH (2005) Human modified temperature induce species changes: joint attribution. Proc Natl Acad Sci USA 102:7465–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K (1999) Metasequoia travels the globe. Arnoldia 59:72–75

    Google Scholar 

  • Sawyer JO, Gray J, West J, Thorburgh DA, Noss RF, Engbeck JH, Marcot BG, Raymond R (2000) History of redwoods and redwood forests. In: Noss RF (ed) The redwood forest. History, ecology, and conservation of redwoods. Save-the-Redwoods League. Island Press, Washington DC, pp 81–118

    Google Scholar 

  • Saylor LC, Simons HA (1970) Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35:294–303

    Article  Google Scholar 

  • Schlarbaum SE, Tsuchiya T (1984a) Chromosome study of coast redwood, Sequoia sempervirens (D.Don) Endl.). Silvae Genet 33:56–62

    Google Scholar 

  • Schlarbaum SE, Tsuchiya T (1984b) Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Syst Evol 147:29–54

    Article  Google Scholar 

  • Schubert G H (1952) Germination of various coniferous seeds after cold storage. USDA Forest Service Research Note PSW-83, 7 p

    Google Scholar 

  • Staudt A, Leidner AK, Howard J et al (2013) The added complications of climate change: understanding and managing biodiversity and ecosystems. Front Ecol Environ 11:494–501

    Article  Google Scholar 

  • St. Clair JB, Howe GT (2011) Strategies for conserving forest genetic resources in the face of climate change. Turk J Bot 35:403–409

    Google Scholar 

  • Stebbins GL (1948) The chromosomes and relationship of Metasequoia and Sequoia. Science 108:95–98

    Article  PubMed  Google Scholar 

  • Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Natl Acad Sci USA 107:571–575

    Article  CAS  PubMed  Google Scholar 

  • Sul IW, Korban SS (2005) Direct shoot organogenesis from needles of three genotypes of Sequoia semperviren. Plant Cell Tissue Org 80:353–358

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, LePage BA (2011) The end of an era—the conservation status of redwoods and other members of the former Taxodiaceae in the 21st century. Jpn J Hist Bot 19:89–100

    Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47:123–138

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  PubMed  Google Scholar 

  • US Environmantal Protection Agency (2000) Global warming—impacts: forests. Document, Washington

    Google Scholar 

  • Wang B, Liu DL, Asseng S, Macadam I, Yu Q (2015) Impact of climate change on wheat flowering time in eastern Australia. Agric Forest Meteorol 209:11–21

    Article  Google Scholar 

  • Weatherspoon CP (1990) Sequoiadendron giganteum (Lindl.) Buchholz, Giant Sequoia.. In: Burns RM, Honkala BH (eds) Silvics of North America. Vol 1. Conifers. Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington DC, pp 552–562

    Google Scholar 

  • Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470

    Article  Google Scholar 

  • Wilczynski S, Mutter E, Wertz B (2014) The application of the tree ring chronology in assessing ecological requirements of Metasequoia glyptostroboides growing in southern Poland. Geochronometria 41:129–135

    Article  Google Scholar 

  • Williams CJ (2005) Ecological characteristics of Metasequoia glyptostroboides. In: LePage BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasequoia. Springer, Berlin, pp 285–304

    Chapter  Google Scholar 

  • Wylie B, Rigge M, Brisco B et al (2014) Effects of disturbance and climate change on ecosystem performance in Yukon river basin boreal forest. Remote Sens 6:9145–9169

    Article  Google Scholar 

  • Yang ZY, Ran JH, Wang XQ (2012) Three genome-based phylogeny of Cupressaceae s.i.: further evidence for the evolution of gymnosperms and southern hemisphere biogeography. Mol Phylogenet Evol 64:452–470

    Article  PubMed  Google Scholar 

  • York RA, O’Hara KL, Battles JJ (2013) Density effects on giant sequoia (Sequoiadendron giganteum) growth thru 22 years: implications for restoration and plantation management. West J Appl For 28:30–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ahuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahuja, M.R. (2017). Climate Change, Genetic Diversity, and Conservation of Paleoendemic Redwoods. In: Ahuja, M., Jain, S. (eds) Biodiversity and Conservation of Woody Plants. Sustainable Development and Biodiversity, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-66426-2_3

Download citation

Publish with us

Policies and ethics