Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 235 Accesses

Abstract

The Large Hadron Collider (LHC) (Evans, The LHC machine, PoS EPS-HEP2009 004, 2009) [1] is a synchrotron particle accelerator with a circumference of 27 Km located about 100 m underground at CERN in the surroundings of Geneva, Switzerland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LHCb’s coordinate system is right-handed and has the z axis in the direction of the beam, the x axis directed to the centre of the accelerator and y is directed upward. Then we define \(\theta \) as the angle with the beam direction and \(\phi \) as the position around the beam in the xy plane, taking \(\phi = 0\) on the x axis. The origin, \((x,y,z)=(0,0,0)\), corresponds to the centre of the interaction area.

References

  1. L. Evans, The LHC machine, PoS EPS-HEP2009 004 (2009)

    Google Scholar 

  2. C. Lefévre, The CERN accelerator complex. Complexe des accélérateurs du CERN

    Google Scholar 

  3. LHCb Collaboration, A. A. Alves Jr. et al., The \({\text{LHCB}}\) detector at the LHC, JINST 3, S08005 (2008)

    Google Scholar 

  4. LHCb Collaboration, R. Aaij et al., Measurement of \(\sigma (pp \rightarrow b \bar{b} X)\) at \(\sqrt{s}=7~{\text{ TeV }}\) in the forward region, Phys. Lett. B 694, 209–216 (2010), arXiv:1009.2731

  5. M. Adinolfi et al., Performance of the \({\text{ LHCB }}\) RICH detector at the LHC. Eur. Phys. J. C 73, 2431 (2013), arXiv:1211.6759

  6. A.A. Alves Jr. et al., Performance of the LHCb muon system. JINST 8, P02022 (2013), arXiv:1211.1346

  7. LHCb Collaboration, R. Aaij et al., LHCb technical design report: Reoptimized detector design and performance, CERN-LHCC-2003-030

    Google Scholar 

  8. Wikipedia, https://en.wikipedia.org/wiki/Cherenkov_radiation

  9. LHCb Collaboration, R. Aaij et al., LHCb Detector Performance, Int. J. Mod. Phys. A 30(07), 1530022 (2015), arXiv:1412.6352

  10. M. Pivk, F. R. Le Diberder, SPlot: A Statistical tool to unfold data distributions, Nucl.Instrum.Meth. A 555, 356–369 (2005), [physics/0402083]

    Google Scholar 

  11. R. Aaij et al., The \({\text{ LHCB }}\) trigger and its performance in 2011. JINST 8, P04022 (2013), arXiv:1211.3055

  12. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, JHEP 05, 026 (2006), arXiv:hep-ph/0603175

  13. T. Sjostrand, S. Mrenna, P.Z. Skands, A. Brief, Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008), arXiv:0710.3820

  14. I. Belyaev et al., in Handling of the generation of primary events in Gauss, the \({\text{ LHCB }}\) simulation framework. Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2010), p. 1155

    Google Scholar 

  15. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A 462, 152–155 (2001)

    Article  ADS  Google Scholar 

  16. P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in \(Z\) and \(W\) decays. Eur. Phys. J. C 45, 97–107 (2006), arXiv:hep-ph/0506026v2

  17. Geant4 Collaboration, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Google Scholar 

  18. M. Clemencic et al., The \({\text{ LHCB }}\) simulation application, Gauss: design, evolution and experience. J. Phys. Conf. Ser. 331, 032023 (2011)

    Article  Google Scholar 

  19. R. Brun, F. Rademakers, S. Panacek, ROOT, an object oriented data analysis framework. Conf. Proc. C 000917, 11–42 (2000)

    Google Scholar 

  20. M. Feindt, U. Kerzel, The NeuroBayes neural network package. Nucl. Instrum. Meth. A 559, 190–194 (2006)

    Article  ADS  Google Scholar 

  21. M. Feindt, A Neural Bayesian Estimator for Conditional Probability Densities, arXiv:physics/0402093 (Unpublished)

  22. W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552, 566–575(2005), arXiv:physics/0503191

  23. H.W. Bertini, Low-Energy intranuclear cascade calculation. Phys. Rev. 131, 1801–1821 (1963)

    Article  ADS  Google Scholar 

  24. B. Andersson, G. Gustafson, H. Pi, The FRITIOF model for very high-energy hadronic collisions. Z. Phys. C 57, 485–494 (1993)

    Article  ADS  Google Scholar 

  25. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  26. COMPASS Collaboration, P. Abbon et al., The COMPASS experiment at CERN, Nucl. Instrum. Meth. A 577, 455–518 (2007), arXiv:hep-ex/0703049

  27. COMPASS Collaboration. Private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Pescatore .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pescatore, L. (2017). The LHCb Detector at the Large Hadron Collider. In: Searching for New Physics in b → sℓ+ℓ− Transitions at the LHCb Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-66423-1_2

Download citation

Publish with us

Policies and ethics