Cellulose-Enabled Polylactic Acid (PLA) Nanocomposites: Recent Developments and Emerging Trends

  • Wei Dan Ding
  • Muhammad Pervaiz
  • Mohini Sain
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Environmental consciousness, technology improvement, and stringent regulations have significantly increased the interest of biodegradable polymers in the industry in the past decade and polylactic acid (PLA) represents one of the most promising biopolymers. However, compared to the conventional petroleum-based polymers, owing to its inherent chemistry, PLA has relatively poor mechanical and thermal properties. To broaden its application, it becomes necessary to introduce inorganic/organic fillers into the biopolymer to meet the performance requirements and facilitate the processing. The use of nanoscale fillers is the strategy by exploiting the nature and properties of the nanoparticulates, such as huge surface area per mass, high aspect ratios, and low percolation threshold. Different inorganic particulates (e.g., nanoclay, nanosilica, carbon nanotubes, etc.) have been extensively studied. However, these added nanoparticulates are inorganic and pose considerable health risks from the manufacturing process to their final disposal. In contrast, nanocellulose, produced from renewable resources, has attracted great interest in recent years due to their sustainability and natural abundance. The combination of PLA and nanocelluloses results in a novel class of fully biorenewable resource-based composites. The recent developments and future trends (i.e., processing methods, various properties, and potential applications) of this novel nanocomposite have been discussed in this chapter.


Cellulose nanofibers Cellulose nanocrystals Polylactic acid Nanocomposites Thermal properties Crystallization Barrier properties Mechanical properties 


  1. Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73CrossRefGoogle Scholar
  2. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276CrossRefGoogle Scholar
  3. Alemdar A, Sain M (2008a) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557CrossRefGoogle Scholar
  4. Alemdar A, Sain M (2008b) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664CrossRefGoogle Scholar
  5. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344CrossRefGoogle Scholar
  6. Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493CrossRefGoogle Scholar
  7. Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheeting 19:123CrossRefGoogle Scholar
  8. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835CrossRefGoogle Scholar
  9. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048CrossRefGoogle Scholar
  10. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259CrossRefGoogle Scholar
  11. Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879CrossRefGoogle Scholar
  12. Boissard CIR, Bourban PE, Plummer CJG, Neagu RC, Månson JAE (2012) Cellular biocomposites from polylactide and microfibrillated cellulose. J Cell Plast 48:445CrossRefGoogle Scholar
  13. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617CrossRefGoogle Scholar
  14. Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013CrossRefGoogle Scholar
  15. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102CrossRefGoogle Scholar
  16. Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56CrossRefGoogle Scholar
  17. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804CrossRefGoogle Scholar
  18. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433CrossRefGoogle Scholar
  19. Chen W, Yu H, Liu Y (2011c) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453CrossRefGoogle Scholar
  20. Cheng S, Panthapulakkal S, Ramezani N, Asiri AM, Sain M (2014a) Aloe vera rind nanofibers: effect of isolation process on the tensile properties of nanofibre films. BioResources 9:7653Google Scholar
  21. Cheng S, Panthapulakkal S, Sain M, Asiri A (2014b) Aloe vera rind cellulose nanofibers-reinforced films. J Appl Polym Sci 131:40592Google Scholar
  22. Cho S, Park H, Yun Y, Jin H-J (2013) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21:529CrossRefGoogle Scholar
  23. Clift MJD, Foster EJ, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12:3666CrossRefGoogle Scholar
  24. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586CrossRefGoogle Scholar
  25. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309CrossRefGoogle Scholar
  26. De Lima R, Feitosa LO, Maruyama CR, Barga MA, Yamawaki PC, Vieira IJ, Teixeira EM, Corrêa AC, Caparelli Mattoso LH, Fraceto LF (2012) Evaluation of the genotoxicity of cellulose nanofibers. Int J Nanomed 7:3555CrossRefGoogle Scholar
  27. Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755CrossRefGoogle Scholar
  28. Ding WD, Kuboki T, Zhao N, Malm T, Park CB, Sain M (2012) Mechanical properties of cellulose nanofiber reinforced polylactic acid biocomposites and their foams. CSME International Congress, WinnipegGoogle Scholar
  29. Ding WD, Kuboki T, Wong A, Park CB, Sain M (2015a) Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC Adv 5:91544CrossRefGoogle Scholar
  30. Ding WD, Chu RKM, Mark LH, Park CB, Sain M (2015b) Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J 71:231CrossRefGoogle Scholar
  31. Dlouhá J, Suryanegara L, Yano H (2012) The role of cellulose nanofibres in supercritical foaming of polylactic acid and their effect on the foam morphology. Soft Matter 8:8704CrossRefGoogle Scholar
  32. Dlouhá J, Suryanegara L, Yano H (2014) Cellulose nanofibre–poly(lactic acid) microcellular foams exhibiting high tensile toughness. React Funct Polym 85:201CrossRefGoogle Scholar
  33. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327CrossRefGoogle Scholar
  34. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841CrossRefGoogle Scholar
  35. Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF (2015) Shape-selective zeolite catalysis for bioplastics production. Science 349:78CrossRefGoogle Scholar
  36. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57CrossRefGoogle Scholar
  37. Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144CrossRefGoogle Scholar
  38. Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052CrossRefGoogle Scholar
  39. Faruk O, Bledzki AK, Matuana LM (2007) Microcellular foamed wood-plastic composites by different processes: a review. Macromol Mater Eng 292:113CrossRefGoogle Scholar
  40. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012a) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027CrossRefGoogle Scholar
  41. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012b) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948CrossRefGoogle Scholar
  42. Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377CrossRefGoogle Scholar
  43. Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541CrossRefGoogle Scholar
  44. Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261CrossRefGoogle Scholar
  45. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456CrossRefGoogle Scholar
  46. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002CrossRefGoogle Scholar
  47. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479CrossRefGoogle Scholar
  48. Habibi Y, Aouadi S, Raquez JM, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877CrossRefGoogle Scholar
  49. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434CrossRefGoogle Scholar
  50. Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149CrossRefGoogle Scholar
  51. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80CrossRefGoogle Scholar
  52. Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208CrossRefGoogle Scholar
  53. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022CrossRefGoogle Scholar
  54. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103CrossRefGoogle Scholar
  55. Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15CrossRefGoogle Scholar
  56. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552CrossRefGoogle Scholar
  57. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742CrossRefGoogle Scholar
  58. Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A Comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991CrossRefGoogle Scholar
  59. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552CrossRefGoogle Scholar
  60. Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105CrossRefGoogle Scholar
  61. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321CrossRefGoogle Scholar
  62. Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14:3155CrossRefGoogle Scholar
  63. Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200CrossRefGoogle Scholar
  64. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A 42:1509CrossRefGoogle Scholar
  65. Lagerwall JPF, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80CrossRefGoogle Scholar
  66. Landry V, Alemdar A, Blanchet P (2011) Nanocrystalline cellulose: morphological, physical, and mechanical properties. Forest Prod J 61:104CrossRefGoogle Scholar
  67. Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15CrossRefGoogle Scholar
  68. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384CrossRefGoogle Scholar
  69. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417CrossRefGoogle Scholar
  70. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834CrossRefGoogle Scholar
  71. Lin N, Chen Y, Hu F, Huang J (2015) Mechanical reinforcement of cellulose nanocrystals on biodegradable microcellular foams with melt-compounding process. Cellulose 22:2629CrossRefGoogle Scholar
  72. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterisation of solution cast cellulose nanofibre—reinforced poly(lactic acid). Express Polym Lett 4:26CrossRefGoogle Scholar
  73. Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256CrossRefGoogle Scholar
  74. Ma Z, Chen F, Zhu YJ, Cui T, Liu XY (2011) Amorphous calcium phosphate/poly(d, l-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J Colloid Interface Sci 359:371CrossRefGoogle Scholar
  75. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014CrossRefGoogle Scholar
  76. Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300CrossRefGoogle Scholar
  77. Matuana LM, Faruk O (2010) Effect of gas saturation conditions on the expansion ratio of microcellular poly (lactic acid)/wood-flour composites. Express Polym Lett 4:621CrossRefGoogle Scholar
  78. Michalska-Pożoga I, Tomkowski R, Rydzkowski T, Thakur VK (2016) Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Ind Crops Prod 92:149CrossRefGoogle Scholar
  79. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844CrossRefGoogle Scholar
  80. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335CrossRefGoogle Scholar
  81. Nair S, Yan N (2015a) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137CrossRefGoogle Scholar
  82. Nair SS, Yan N (2015b) Bark derived submicron-sized and nano-sized cellulose fibers: from industrial waste to high performance materials. Carbohydr Polym 134:258CrossRefGoogle Scholar
  83. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155CrossRefGoogle Scholar
  84. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293CrossRefGoogle Scholar
  85. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176CrossRefGoogle Scholar
  86. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683CrossRefGoogle Scholar
  87. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241CrossRefGoogle Scholar
  88. Oksman K, Mathew AP (2014) Melt compounding process of cellulose nanocomposites. In: Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M (eds) Handbook of green materials, vol 2. World Scientific Publishing, Singapore, pp 53–68CrossRefGoogle Scholar
  89. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776CrossRefGoogle Scholar
  90. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A 83:2CrossRefGoogle Scholar
  91. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934CrossRefGoogle Scholar
  92. Panthapulakkal S, Sain M (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plast Polym Technol 2:9Google Scholar
  93. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53:424CrossRefGoogle Scholar
  94. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815CrossRefGoogle Scholar
  95. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191CrossRefGoogle Scholar
  96. Pervaiz M, Oakley P, Sain M (2014) Extrusion of thermoplastic starch: effect of “green” and common polyethylene on the hydrophobicity characteristics. Mater Sci Appl 5:845Google Scholar
  97. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187CrossRefGoogle Scholar
  98. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535CrossRefGoogle Scholar
  99. Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720CrossRefGoogle Scholar
  100. Qu P, Zhou Y, Zhang X, Yao S, Zhang L (2012) Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J Appl Polym Sci 125:3084CrossRefGoogle Scholar
  101. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504CrossRefGoogle Scholar
  102. Rhim J-W, Mohanty AK, Singh SP, Ng PKW (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 101:3736CrossRefGoogle Scholar
  103. Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44CrossRefGoogle Scholar
  104. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671CrossRefGoogle Scholar
  105. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657CrossRefGoogle Scholar
  106. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687CrossRefGoogle Scholar
  107. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485CrossRefGoogle Scholar
  108. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248CrossRefGoogle Scholar
  109. Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798CrossRefGoogle Scholar
  110. Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987CrossRefGoogle Scholar
  111. Singha AS, Thakur VK (2008a) Synthesis and characterization of grewia optiva fiber-reinforced pf-based composites. Int J Polym Mater Polym Biomater 57:1059CrossRefGoogle Scholar
  112. Singha AS, Thakur VK (2008b) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5(S1):1055Google Scholar
  113. Singha AS, Thakur VK (2008c) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. BioResources 3:1173Google Scholar
  114. Singha AS, Thakur VK (2009a) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48:482CrossRefGoogle Scholar
  115. Singha AS, Thakur VK (2009b) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71Google Scholar
  116. Singha AS, Thakur VK (2009c) Mechanical, Thermal and morphological properties of grewia optiva fiber/polymer matrix composites. Polym Plast Technol Eng 48:201CrossRefGoogle Scholar
  117. Singha AS, Thakur VK (2009d) Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder. BioResources 4:292Google Scholar
  118. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425CrossRefGoogle Scholar
  119. Song Y, Tashiro K, Xu D, Liu J, Bin Y (2013) Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite. Polymer 54:3417CrossRefGoogle Scholar
  120. Spinella S, Lo Re G, Liu B, Dorgan J, Habibi Y, Leclère P, Raquez J-M, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9CrossRefGoogle Scholar
  121. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187CrossRefGoogle Scholar
  122. Thakur VK, Singha AS, Thakur MK (2013a) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64CrossRefGoogle Scholar
  123. Thakur VK, Singha AS, Thakur MK (2013b) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62:226CrossRefGoogle Scholar
  124. Thakur VK, Singha AS, Thakur MK (2013c) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32(S1):E741CrossRefGoogle Scholar
  125. Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495CrossRefGoogle Scholar
  126. Thakur VK, Thakur MK, Gupta RK (2013e) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18CrossRefGoogle Scholar
  127. Thakur VK, Thakur MK, Gupta RK (2013f) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820CrossRefGoogle Scholar
  128. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454CrossRefGoogle Scholar
  129. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763CrossRefGoogle Scholar
  130. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815Google Scholar
  131. Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348CrossRefGoogle Scholar
  132. Vazquez A, Foresti ML, Moran J, Cyras V (2015) Extraction and production of cellulose nanofibers. In: Pandey JK, Takagi H, Nakagaito AN, Kim H-J (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, Berlin, pp 81–118Google Scholar
  133. Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo® polylactide production. Ind Biotechnol 11:167CrossRefGoogle Scholar
  134. Vink ETH, Rábago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) The sustainability of Natureworks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551CrossRefGoogle Scholar
  135. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4:1765CrossRefGoogle Scholar
  136. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784CrossRefGoogle Scholar
  137. Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924CrossRefGoogle Scholar
  138. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270CrossRefGoogle Scholar
  139. Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079CrossRefGoogle Scholar
  140. Wang B, Sain M (2007a) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521CrossRefGoogle Scholar
  141. Wang B, Sain M (2007b) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2:371Google Scholar
  142. Wang B, Sain M (2007c) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538CrossRefGoogle Scholar
  143. Wang X, Li W, Kumar V (2006) A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 27:1924CrossRefGoogle Scholar
  144. Wang B, Mireles K, Rock M, Li Y, Thakur VK, Gao D, Kessler MR (2016) Synthesis and preparation of bio-based ROMP thermosets from functionalized renewable isosorbide derivative. Macromol Chem Phys 217:871CrossRefGoogle Scholar
  145. Wu JH, Kuo MC, Chen CW, Kuan PH, Wang YJ, Jhang SY (2013) Crystallization behavior of α-cellulose short-fiber reinforced poly(lactic acid) composites. J Appl Polym Sci 129:3007CrossRefGoogle Scholar
  146. Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149CrossRefGoogle Scholar
  147. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999CrossRefGoogle Scholar
  148. Xu X, Wang H, Jiang L, Wang X, Payne SA, Zhu JY, Li R (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409CrossRefGoogle Scholar
  149. Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2:1691CrossRefGoogle Scholar
  150. Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091CrossRefGoogle Scholar
  151. Zhang X, Li W, Ye B, Lin Z, Rong J (2013) Studies on confined crystallization behavior of nanobiocomposites consisting of acetylated bacterial cellulose and poly (lactic acid). J Thermoplast Compos Mater 26:346CrossRefGoogle Scholar
  152. Zhao Y, Li J (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427CrossRefGoogle Scholar
  153. Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Wei Dan Ding
    • 1
    • 2
  • Muhammad Pervaiz
    • 2
  • Mohini Sain
    • 2
    • 3
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Centre for Biocomposites and Biomaterials Processing, Faculty of ForestryUniversity of TorontoTorontoCanada
  3. 3.Centre of Advanced ChemistryKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations