Functional Biopolymer Composites

  • Sarat K. Swain
  • Adrushya J. Pattanayak
  • Amrita P. Sahoo
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


In the current era, there is a burgeoning demand for clean, pollution-free environment and high urgency for minimizing fossil fuel. This leads to an increasing demand for manufacture of high performing cultured products from biological and renewable resources. Polymer biocomposites are the suitable alternate to fulfil such alarming urgency. These have properties of high mechanical resistance, thermogravimetric, oxygen barrier, biodegradation and chemical resistance. There is no single material which can achieve such wide range of properties for which design of composites, in particular with biopolymers, is an attempt for substantial improvement of properties. The biopolymers can be functionalized for better compatibility during preparation of composites. In this chapter, study of biopolymers and their composites is presented along with some critical issues, advantages and disadvantages. A brief discussion about preparation of bionanocomposites by in situ reaction, solution casting method and melt mixing technique is discussed. The interaction between components and characterisation of biocomposites has been presented through various spectroscopic analyses such as FTIR, XRD, SEM and TEM. The mechanical, thermal, biodegradable and antimicrobial properties of functional polymer-based biocomposites are compared. Finally biomedical, packaging and environmental applications of biocomposites are presented along with their future prospect.


Biopolymers Biocomposites Packaging Biomedical applications 









Polydioxanone suture


Polyglycolic acid




Polylactic acid


Polymethyl methacrylate






Polyvinyl chloride



Authors express their thanks to Department of Science and Technology (Biotechnology), Government of Odisha, India for financial support.


  1. Abdelarzek EM, Elashmawi IS, Labeeb S (2010) Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Physics B 405:2017–2021Google Scholar
  2. Akbari Z, Ghomashchi T, Moghadam S (2007) Improvement in food packaging industry with biobased nanocomposites. Int J Food Eng 4(3):1–24Google Scholar
  3. Arora A, Padua GW (2010) Review: nanocomposite in food packaging. J Food Sci 75(1):R43–R49CrossRefGoogle Scholar
  4. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122CrossRefGoogle Scholar
  5. Beniash E (2011) Biominerals—hierarchical nanocomposites: the example of bone. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:47–69CrossRefGoogle Scholar
  6. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34CrossRefGoogle Scholar
  7. Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release 150:1506CrossRefGoogle Scholar
  8. Biswas A, Bayer IS, Zhao H, Wang T, Watanabe F, Biris AS (2010) Design and synthesis of biomimetic multicomponent all-bone minerals bionano composites. Biomacromolecules 11:2545–2549CrossRefGoogle Scholar
  9. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefGoogle Scholar
  10. Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical applications. Appl Clay Sci 46:73–80CrossRefGoogle Scholar
  11. Choy JH, Choi SJ, Oh JM, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132CrossRefGoogle Scholar
  12. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262CrossRefGoogle Scholar
  13. Daly WH, Chun Noyles, HL (1991) Polymers from biobased materials. Data Corporation: Park Ridge 81–89Google Scholar
  14. Damadzadeh B, Jabari H, Skrifvars M, Airola K, Moritz N, Vallittu PK (2010) Effect of ceramic filler content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid composites for medical applications. J Mater Sci Mater Med 21:2523–2531CrossRefGoogle Scholar
  15. Damm C, Münsted H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver nano- and microcomposites. Mater Chem Phys 108:61–66CrossRefGoogle Scholar
  16. Darder M, Aranda P, Ruiz-Hitzky E (2012) Chitosan-clay bionanocomposites. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 365–391CrossRefGoogle Scholar
  17. de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRefGoogle Scholar
  18. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253CrossRefGoogle Scholar
  19. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRefGoogle Scholar
  20. Emamifar A, Kadivar M, Shahedi N, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22:408–413CrossRefGoogle Scholar
  21. Entcheva E, Bien H, Yin LH, Chung CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762Google Scholar
  22. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962CrossRefGoogle Scholar
  23. Fernandes EM, Correlo VM, Chagas JAM, Mano JF, Reis RL (2010) Cork based composites using polyolefin’s as matrix: morphology and mechanical performance. Compos Sci Technol 70:2310–2318CrossRefGoogle Scholar
  24. Fernandes EM, Correlo VM, Chagas JAM, Mano JF, Reis RL (2011) Properties of new cork–polymer composites: advantages and drawbacks as compared with commercially available fibreboard materials. Compos Struct 3:120–3129Google Scholar
  25. Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441CrossRefGoogle Scholar
  26. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Kenny JM (2012) Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRefGoogle Scholar
  27. Friedman M, Junesa VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73:1737–1761CrossRefGoogle Scholar
  28. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655CrossRefGoogle Scholar
  29. Gandini A, Neto CP, Silvestre AJD (2006) Suberin: a promising renewable resource for novel macromolecular materials. Prog Polym Sci 31:878–892CrossRefGoogle Scholar
  30. Gatica JM, Vidal H (2010) Non-cordierite clay-based structured materials for environmental applications. J Hazard Mater 181:9–18 CrossRefGoogle Scholar
  31. Gibson LJ (2003) Cellular solids. MRS Bull 28:270–274CrossRefGoogle Scholar
  32. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRefGoogle Scholar
  33. Hatzigrigoriou NB, Papaspyrides CD (2011) Nanotechnology in plastic food-contact materials. J Appl Polym Sci 122:3720–3739CrossRefGoogle Scholar
  34. Hong SI, Rhim JW (2008) Antimicrobal activity of organically modified nanoclays. J Nanosci Nanotechnol 8:5818–5824CrossRefGoogle Scholar
  35. Jaworska M, Sakurai K, Gaudon P, Guibal E (2003) Influence of chitosan characteristics on polymer properties. I: crystallographic properties. Polym Int 52:198–205CrossRefGoogle Scholar
  36. Johansson C (2011) Bio-nanocomposites for food packaging applications. In: Mittal V (ed) Nanocomposites with biodegradable polymers. Oxford University Press, New York, pp 348–367CrossRefGoogle Scholar
  37. Kaplan DL (1998) Biopolymers from renewable resources. Springer, New YorkCrossRefGoogle Scholar
  38. Kasuga T, Maeda H, Kato K, Nogami M, Hata KI, Ueda M (2003) Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253CrossRefGoogle Scholar
  39. Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilization of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130CrossRefGoogle Scholar
  40. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A, (2011) Nanocelluloses: A new family of nature based materials. Angew Chem Int Ed 50:5438–5466Google Scholar
  41. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  42. Laka M, Chernyavskaya S, Shulga G, Shapovalov V, Valenkov A, Tavroginskaya M (2011) Use of cellulose-containing fillers in composites with polypropylene. Mater Sci (Mediziagotyra) 17(2):150–154. ISSN 1392-1320Google Scholar
  43. Liu Y, Wang WB, Wang AG (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259:258–264CrossRefGoogle Scholar
  44. Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Coll Interface Sci 82:43–92CrossRefGoogle Scholar
  45. Mano JF (2002) The viscoelastic properties of cork. J Mater Sci 37:257–263CrossRefGoogle Scholar
  46. Martson M, Viljanto J, Hurme T, Laippala P, Saukko P ( 1999/1989) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 20:95Google Scholar
  47. Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly (hydroxybutyrate-co-valerate)(PHBV)/poly(ε-caprolactone)(PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J Mater Sci 50:3812–3824CrossRefGoogle Scholar
  48. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 24:276–277Google Scholar
  49. Moreira MR, Pereda M, Marcovich NE, Roura SI (2011) Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami. J Food Sci 76(1):54–63CrossRefGoogle Scholar
  50. Neumann PE, Seib PA (1993) Starch-based biodegradable packing filler and method of preparing same. US 5185382A Google Scholar
  51. Nieddu E, Mazzucco L, Gentile P, Benko T, Balbo V, Mandrile R, Ciardelli G (2009) Preparation and biodegradation of clay composite of PLA. React Funct Polym 69:371–379CrossRefGoogle Scholar
  52. Nwe N, Stevens WF (2004) Effect of urea on fungal chitosan production in solid substrate Fermentation. Process Biochem 39:1639–1642CrossRefGoogle Scholar
  53. Ogawa K, Yui T, Okuyama K (2004) Three D structures of chitosan. Int J Biol Macromol 34:1–8CrossRefGoogle Scholar
  54. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432CrossRefGoogle Scholar
  55. Pasquini D, de Morais Teixeira E, da Silva Curvelo AA, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68:193–201CrossRefGoogle Scholar
  56. Paul MA, Delcourt C, Alexandre M, Degée Ph, Monteverde F, Dubois Ph (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87:535–542CrossRefGoogle Scholar
  57. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicatenanocomposites. Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  58. Pires RA, Aroso IM, Silva SP, Mano JF, Reis RL (2011) Isolation of friedelin from black condensate of cork. Nat Prod Commun 6:1577–1579Google Scholar
  59. Pochanavanich P, Suntornsuk W (2002) Fungal chitosan production and its characterization. Lett Appl Microbiol 35:17–21CrossRefGoogle Scholar
  60. Prochoń M, Przepiórkowska A (2013) Innovative application of biopolymer keratin as a filler of synthetic acrylonitrile-butadiene rubber NBR. J Chem 2013:8Google Scholar
  61. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380CrossRefGoogle Scholar
  62. Rahim M, Haris MRHM (2015) Application of biopolymer composites in arsenic removal from aqueous medium: a review. J Radiat Res Appl Sci 8:255–263CrossRefGoogle Scholar
  63. Rai M, Ingle AP, Gupta I, Brandelli A (2015) Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharm 496:159–172CrossRefGoogle Scholar
  64. Rajamohan N, Al-Sinani J (2016) Removal of boron using clay-effect of process parameters, kinetic and isotherm studies. J Eng Sci Technol 11(3):311–326Google Scholar
  65. Rhim JW, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433CrossRefGoogle Scholar
  66. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822CrossRefGoogle Scholar
  67. Rhim JW, Park HM, Ha CS (2013a) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652CrossRefGoogle Scholar
  68. Rhim JW, Park HM, Ha CS (2013b) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652CrossRefGoogle Scholar
  69. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  70. Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 20(42):9306–9321CrossRefGoogle Scholar
  71. Ruiz-Hitzky E, Aranda P, Alvarez A, Santarén J, Esteban-Cubillo A (2011) Advanced materials and new applications of sepiolite and Palygorskite. In: Galán E, Singer A (eds) Developments in Palygorskite-sepiolite research. A new outlook on these nanomaterials. Elsevier, Oxford, pp 393–452CrossRefGoogle Scholar
  72. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365CrossRefGoogle Scholar
  73. Singha AS, Thakur VK (2008a) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5(S1):1055–1062Google Scholar
  74. Singha AS, Thakur VK (2008b) Synthesis and characterization of Grewia optiva fiber-reinforced PF-based composites. Int J Polym Mater Polym Biomater 57(12):1059–1074CrossRefGoogle Scholar
  75. Singha AS, Thakur VK (2008c) Fabrication and study of lignocellulosic Hibiscus sabdariffa fiber reinforced polymer composites. BioResources 3(4):1173–1186Google Scholar
  76. Singha AS, Thakur VK (2009a) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6(1):71–76Google Scholar
  77. Singha AS, Thakur VK (2009b) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48(4):482–487CrossRefGoogle Scholar
  78. Singha AS, Thakur VK (2009c) Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder. BioResources 4(1):292–308Google Scholar
  79. Singha AS, Thakur VK (2009d) Mechanical, thermal and morphological properties of Grewia optiva fiber/polymer matrix composites. Polym-Plast Technol Eng 48(2):201–208CrossRefGoogle Scholar
  80. Sinha Ray S, Okamoto M (2003a) Polymer/layered silicate nanocomposites:a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  81. Sinha Ray S, Okamoto M (2003b) New polylactide/layered silicate nanocomposites: open a new dimension for plastics and composites. Macromol Rapid Common 24:815–840CrossRefGoogle Scholar
  82. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003a) Biodegradablepolylactide/montmorillonite nanocomposites. J Nanosci Nanotechnol 3:503–510CrossRefGoogle Scholar
  83. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003b) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of materials properties, biodegradability and melt rheology. Polymer 44:857–866CrossRefGoogle Scholar
  84. Smolander M, Chaudhry Q (2010) Nanotechnologies in food packaging. In: Chaudhry Q, Castle L, Watkins R (eds) Nanotechnologies in food. RSC Publishing, Cambridge, pp 86–101CrossRefGoogle Scholar
  85. Song H, Zheng L (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 20:1737–1746CrossRefGoogle Scholar
  86. Song HZ, Luo ZQ, Wang CZ, Hao XF, Gao JG (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98:161–167CrossRefGoogle Scholar
  87. Sorrentino A, Gorrasi G, Vittoria V (2007) Potentilal perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95CrossRefGoogle Scholar
  88. Sprio S, Ruffini A, Valentini F, D’Alessandro T, Sandri M, Panseri S, Tampieri A (2011) Biomimesis and biomorphic transformations: new concepts applied to bone regeneration. J Biotechnol 156:347–355CrossRefGoogle Scholar
  89. Srinivasan R (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng 2011:17. Article ID 872531CrossRefGoogle Scholar
  90. Stokke DD, Gardner DJ (2003) Fundamental aspects of wood as a component of thermoplastic composites. J Vinyl Addit Technol 9:96–104CrossRefGoogle Scholar
  91. Subbiah T, Bhat GS, Tock RW, Parameswaran S, RamKumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569CrossRefGoogle Scholar
  92. Suntornsuk W, Pochanavanich P, Suntornsuk L (2002) Fungal chitosan production on food processing by-products. Process Biochem 37:727–729CrossRefGoogle Scholar
  93. Takahashi T, Yamaguchi M (1991) Host-guest interaction between swelling clay-minerals and poorly water-soluble drugs. 1. Complex-formation between a swelling clay mineral and griseofulvin. J Incl Phenom Mol Recognit Chem 10:283–297CrossRefGoogle Scholar
  94. Tang X, Alavi S, Herald TJ (2008) Barrier and mechanical properties of starch clay nanocomposite film. Cereal Chem 85(3):433–439Google Scholar
  95. Temenoff JS, Mikos Antonios G (2008) Biomaterials: the intersection of biology and materials science. Pearson/Prentice Hall, Upper Saddle River, N.JGoogle Scholar
  96. Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332:305–316CrossRefGoogle Scholar
  97. Thakur VK, Kessler MR (2014a) Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials. Mater Today Commun 1(1–2):34–41CrossRefGoogle Scholar
  98. Thakur VK, Kessler MR (2014b) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460CrossRefGoogle Scholar
  99. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652. doi: 10.1021/sc500634p CrossRefGoogle Scholar
  100. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165CrossRefGoogle Scholar
  101. Thakur VK, Thakur MK, Gupta RK (2013a) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25CrossRefGoogle Scholar
  102. Thakur VK, Singha AS, Thakur MK (2013b) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32(S1):E741–E748CrossRefGoogle Scholar
  103. Thakur VK, Thakur MK, Gupta RK (2013c) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18(7):495–503CrossRefGoogle Scholar
  104. Thakur VK, Thakur MK, Gupta RK (2013d) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828CrossRefGoogle Scholar
  105. Thakur VK, Singha AS, Thakur MK (2013e) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18(1):64–72CrossRefGoogle Scholar
  106. Thakur VK, Singha AS, Thakur MK (2013f) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62(4):226–230CrossRefGoogle Scholar
  107. Thakur VK, Thakur MK, Gupta RK (2014a) Graft copolymers of natural fibers for green composites. Carbohydr Polym 104:87–93CrossRefGoogle Scholar
  108. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014b) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4(35):18240–18249CrossRefGoogle Scholar
  109. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4(1):1–17CrossRefGoogle Scholar
  110. Tolaimate A, Desbrieres J, Rhazi M, Alagui A, Vincendon M, Vottero P (2000) On the Influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer 41:2463–2469CrossRefGoogle Scholar
  111. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefGoogle Scholar
  112. Uyama H, Kuwabara M, Tsujimoto T, Kobayashi S (2003) Enzymatic synthesis and curing of biodegradable epoxide-containing polyesters from renewable resources. Biomacromolecules 4:211–215CrossRefGoogle Scholar
  113. Viçosa AL, Gomes ACO, Soares BG, Paranhos CM (2009) Effect of sepiolite on the physical properties and swelling behavior of rifampicin-loaded nanocomposite hydrogels. Express Polym Lett 3:518–524CrossRefGoogle Scholar
  114. Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer-clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026CrossRefGoogle Scholar
  115. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  116. Wang XH, Wang AQ (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45:2086–2094CrossRefGoogle Scholar
  117. Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y (2006) Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47:6738–6744CrossRefGoogle Scholar
  118. Wang WB, Zheng YA, Wang AQ (2008) Syntheses and properties of superabsorbent composites based on natural guar gum and attapulgite. Polym Adv Technol 19:1852–1859CrossRefGoogle Scholar
  119. Wang XH, Zheng Y, Wang AQ (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168:970–977CrossRefGoogle Scholar
  120. Wang B, Mireles K, Rock M, Li Y, Thakur VK, Gao D, Kessler MR (2016) Synthesis and preparation of bio-based ROMP thermosets from functionalized renewable isosorbide derivative. Macromol Chem Phys 217(7):871–879CrossRefGoogle Scholar
  121. Wu T, Zivanovic S, Draughon FA, Sams CE (2004) Chitin and chitosan-value-added products from mushroom waste. J Agric Food Chem 52:7905–7910CrossRefGoogle Scholar
  122. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040CrossRefGoogle Scholar
  123. Zhang M, Haga A, Sekiguchi H, Hirano S (2000) Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromol 27:99–105CrossRefGoogle Scholar
  124. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polymers. Polym Degrad Stab 93:1450–1459CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sarat K. Swain
    • 1
  • Adrushya J. Pattanayak
    • 1
  • Amrita P. Sahoo
    • 1
  1. 1.Department of ChemistryVeer Surendra Sai University of TechnologyBurla, SambalpurIndia

Personalised recommendations