Biopolymer Composite Materials with Antimicrobial Effects Applied to the Food Industry

Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Over the past decade, there has been a marked increase in consumer demand for healthy foods that are convenient, safe, with a longer useful life, and packaged using eco-materials. This has prompted both scientists and the food industry to investigate new strategies for food processing, handling, and packaging. In particular, films and coatings made from biodegradable and edible composite materials with antimicrobial effects, either due to intrinsic characteristics or through the incorporation of traditional or natural antimicrobial composites have been developed. These materials have proved to be a novel alternative to extend the shelf-life of foods, while maintaining their physical, chemical, and sensory properties and, most importantly, ensuring food safety. They also serve as a barrier against moisture loss from foods and the entry of oxygen. In addition, they can convey different bioactive compounds, some of which have an antimicrobial effect on important pathogenic microorganisms, thus ensuring food safety. All of this with an advantageous cost–benefit ratio. In this chapter, we review various biopolymer-based antimicrobial composites incorporated in films and coatings and their effects on different food matrices. Finally, factors that should be considered when developing composite materials with antimicrobial effects, as well as toxicological aspects and the regulatory status of these materials are discussed.


Antimicrobials Composite materials Edible coatings Edible films Natural fillers Packaging Thermoplastic materials 



The authors would like to thank National Council of Scientific and Technical Research (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417) and National University of Mar del Plata (UNMdP) for the financial support.


  1. Abee T, Rombouts FM, Hugenholtz J, Guihard G, Letellier L (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl Environ Microb 60(6):1962–1968Google Scholar
  2. Almajano MP, Carbo R, Jiménez JAL, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108(1):55–63CrossRefGoogle Scholar
  3. Ammendolia MG, Iosi F, De Berardis B, Guccione G, Superti F, Conte MP, Longhi C (2014) Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles. PLoS ONE 9(1):e84986CrossRefGoogle Scholar
  4. Ayala-Zavala JF, Villegas-Ochoa MA, Cuamea-Navarro F, González-Aguilar GA (2005) Compuestos volátiles de origen natural. Nueva alternativa para la conservación. En: Nuevas tecnologıas de conservación de productos vegetales frescos cortados. González-Aguilar GA, Gargea AA, Cuamea-Navarro F (ed). Sonora, Mexico: CIAD AC, pp 314–338Google Scholar
  5. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconj Chem 15(1):79–86CrossRefGoogle Scholar
  6. Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689CrossRefGoogle Scholar
  7. Bégin A, Van Calsteren M-R (1999) Antimicrobial films produced from chitosan. Int J Biol Macromol 26(1):63–67CrossRefGoogle Scholar
  8. Beuchat LR (1996) Pathogenic microorganisms associated with fresh produce. J Food Prot 59(2):204–216CrossRefGoogle Scholar
  9. Bhunia AK, Johnson MC, Ray B, Kalchayanand N (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70(1):25–33CrossRefGoogle Scholar
  10. Bogdan J, Jackowska-Tracz A, Zarzyńska J, Pławińska-Czarnak J (2015) Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res Lett 10(1):1–10CrossRefGoogle Scholar
  11. Borm PJA, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol 4(5):521–531CrossRefGoogle Scholar
  12. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32CrossRefGoogle Scholar
  13. Božanić DK, Djoković V, Dimitrijević-Branković S, Krsmanović R, McPherson M, Nair PS, Georges MK, Radhakrishnan T (2011) Inhibition of microbial growth by silver–starch nanocomposite thin films. J Biomat Sci Polym E 22(17):2343–2355CrossRefGoogle Scholar
  14. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253CrossRefGoogle Scholar
  15. Cagri A, Ustunol Z, Ryser ET (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-aminobenzoic or sorbic acids. J Food Sci 66(6):865–870CrossRefGoogle Scholar
  16. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848CrossRefGoogle Scholar
  17. Caillet S, Millette M, Salmieri S, Lacroix M (2006) Combined effects of antimicrobial coating, modified atmosphere packaging, and gamma irradiation on Listeria innocua present in ready-to-use carrots (Daucus carota). J Food Prot 69(1):80–85CrossRefGoogle Scholar
  18. Cao-Hoang L, Grégoire L, Chaine A, Waché Y (2010) Importance and efficiency of in-depth antimicrobial activity for the control of listeria development with nisin-incorporated sodium caseinate films. Food Control 21(9):1227–1233CrossRefGoogle Scholar
  19. Cha DS, Choi JH, Chinnan MS, Park HJ (2002) Antimicrobial films based on Na-alginate and κ-carrageenan. LWT Food Sci Technol 35(8):715–719CrossRefGoogle Scholar
  20. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292CrossRefGoogle Scholar
  21. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120CrossRefGoogle Scholar
  22. Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78(1):225–229CrossRefGoogle Scholar
  23. Commission Regulation (EU) No. 10/2011 of 14 of January 2011 on plastic materials and articles intended to come in contact with food. Off J Eur UnGoogle Scholar
  24. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  25. Crandall AD, Montville TJ (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microb 64(1):231–237Google Scholar
  26. Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74(1):131–142CrossRefGoogle Scholar
  27. Cutter CN, Siragusa GR (1997) Growth of Brochothrix thermosphacta in ground beef following treatments with nisin in calcium alginate gels. Food Microbiol 14(5):425–430CrossRefGoogle Scholar
  28. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface 166(1):119–135CrossRefGoogle Scholar
  29. Datta S, Janes ME, Xue QG, Losso J, La Peyre JF (2008) Control of Listeria monocytogenes and Salmonella anatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. J Food Sci 73(2):M67–M71CrossRefGoogle Scholar
  30. Davidson PM, Parish ME (1989) Methods for testing the efficacy of food antimicrobials. Food Technol Chicago 43:148–155Google Scholar
  31. Davidson PM, Zivanovic S (2003) The use of natural antimicrobials. In: Zeuthen P, BoghSorensen L (eds) Food preservation techniques. CRC Press LLC, Boca Ratón, pp 5–30CrossRefGoogle Scholar
  32. Davidson PM, Taylor TM, Schmidt SE (2013) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR (eds) Food microbiology. Fundamentals and frontiers, 4a edn. ASM Press, Washington, pp 765–801Google Scholar
  33. Dawson PL, Carl GD, Acton JC, Han IY (2007) Efecto de películas a base de soya impregnadas con ácido láurico y nisina sobre el crecimiento de Listeria monocytogenes en mortadella de pavo. Mundo lácteo y cárnico mayo/junio 13–21Google Scholar
  34. des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27CrossRefGoogle Scholar
  35. Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714CrossRefGoogle Scholar
  36. Díaz-Cinco ME, Acedo-Félix E, García-Gálaz A (2005) Principales microorganismos patógenos y de deterioro. In: González-Aguilar GA, Gardea AA, Cuamea-Navarro F (eds) Nuevas tecnologías de conservación de productos vegetales fresocs cortados. CIAD, México, pp 216–240Google Scholar
  37. Dobrovolskaia M (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478CrossRefGoogle Scholar
  38. Donaldson K, Seaton A (2007) The Janus faces of nanoparticles. J Nanosci Nanotechnol 7(12):4607–4611Google Scholar
  39. Donaldson K, Faus S, Borm PJA, Stone V (2007) Approaches to the toxicological testing of particles. In: Donaldson K, Borm PJA (eds) Particle toxicology. CRC Press, Taylor and Francis Group, London, pp 299–316Google Scholar
  40. Dong H, Cheng L, Tan J, Zheng K, Jiang Y (2004) Effects of chitosan coating on quality and shelf life of peeled litchi fruit. J Food Eng 64(3):355–358CrossRefGoogle Scholar
  41. Doores S (1993) Organic acids. In: Davidson PM, Branen AL (eds) Antimicrobials in food. Marcel Dekker, Nueva York, pp 95–136Google Scholar
  42. Duan J, Park S, Daeschel M, Zhao Y (2007) Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J Food Sci 72(9):M355–M362CrossRefGoogle Scholar
  43. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182CrossRefGoogle Scholar
  44. El Saeed AM, El-Fattah MA, Azzam AM (2015) Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dyes Pigments 121:282–289CrossRefGoogle Scholar
  45. Eswaranandam S, Hettiarachchy NS, Meullenet JF (2006) Effect of malic and lactic acid incorporated soy protein coatings on the sensory attributes of whole apple and fresh-cut cantaloupe. J Food Sci 71(3):S307–S313CrossRefGoogle Scholar
  46. European Parlament and Council Directive N_98/72/EC (ED) (1998) Food additive other than colors and sweeteners.
  47. European Parlament and Council Directive N_2008/84/EC (ED) (2008) Laying down specific purety criteria on food additives other than colours and sweeteners.;0175:EN:PDF
  48. European Parlament and Council Directive No. 95/2/EC (ED) (1995) Food additive other than colors and sweeteners.
  49. Fajardo P, Martins JT, Fuciños C, Pastrana L, Teixeira JA, Vicente AA (2010) Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. J Food Eng 101(4):349–356CrossRefGoogle Scholar
  50. Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97(1):104–113CrossRefGoogle Scholar
  51. Florence AT (2005) Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today 2(1):75–81CrossRefGoogle Scholar
  52. Food Standards Australian New Zeland (FSANZ) (2007) Application A565. Use of nisin in processed meat product.
  53. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874CrossRefGoogle Scholar
  54. Franklin NB, Cooksey KD, Getty KJ (2004) Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J Food Prot 67(3):480–485CrossRefGoogle Scholar
  55. Franssen LR, Knochta JM (2003) Edible coatings containing natural antimicrobials for processed foods. In: Roller S (ed) Natural antimicrobials for minimal processing of food. CRC Press, Boca Ratón, pp 250–262CrossRefGoogle Scholar
  56. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133(10):3275S–3284SGoogle Scholar
  57. Fujimoto A, Tsukue N, Watanabe M, Sugawara I, Yanagisawa R, Takano H, Yoshida S, Takeda K (2005) Diesel exhaust affects immunological action in the placentas of mice. Environ Toxicol 20(4):431–440CrossRefGoogle Scholar
  58. Gabor F, Bogner E, Weissenboeck A, Wirth M (2004) The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliver Rev 56(4):459–480CrossRefGoogle Scholar
  59. Gadang VP, Hettiarachchy NS, Johnson MG, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. J Food Sci 73(8):M389–M394CrossRefGoogle Scholar
  60. Gennadios A, Hanna MA, Kurth LB (1997) Application of edible coatings on meats, poultry and seafoods: a review. LWT Food Sci Technol 30(4):337–350CrossRefGoogle Scholar
  61. Gómez-Estaca J, Montero P, Giménez B, Gómez-Guillén MC (2007) Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chem 105(2):511–520CrossRefGoogle Scholar
  62. Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Tech 20(1):3–16CrossRefGoogle Scholar
  63. González-Aguilar GA, Monroy-García IN, Goycoolea-Valencia F, Díaz-Cinco ME, Ayala-Zavala JF (2005) Cubiertas comestibles de quitosano. Una alternative para prevenir el deterioro microbiano y conserver la calidad de papayas frescas cortadas. In: González-Aguilar G, Cuamea-Navarro F (eds) Nuevas tecnologías de conservación y envasado de frutas y hortalizas. Hermosillo, México, CIAD, pp 121–133Google Scholar
  64. González-Aguilar GA, Valenzuela-Soto E, Lizardi-Mendoza J, Goycoolea F, Martínez-Téllez MA, Villegas-Ochoa MA, Monroy-García IN, Ayala-Zavala JF (2009) Effect of chitosan coating in preventing deterioration and preserving the quality of fresh-cut papaya ‘Maradol’. J Sci Food Agric 89(1):15–23CrossRefGoogle Scholar
  65. Gould GW (1989) Introduction. In: Gould GW (ed) Mechanisms of action of food preservation procedures. Elsevier Applied Science, Londres, pp 1–42Google Scholar
  66. Govers M, Termont D, Vanaken GA, Vandermeer R (1994) Characterization of the adsorption of conjugated and unconjugated bile-acids to insoluble, amorphous calcium-phosphate. J Lipid Res 35(5):741–748Google Scholar
  67. Guilbert S, Gontard N (1995) Edible and biodegradable food packing. In: Ackermann P, Jágerstand M, Ohlsson T (eds) Food and packing material—chemical interactions. The Royal Society of Chemistry, London, pp 159–168Google Scholar
  68. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharm 49(3):217–229CrossRefGoogle Scholar
  69. Han C, Lederer C, McDaniel M, Zhao Y (2005) Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings. J Food Sci 70(3):S172–S178CrossRefGoogle Scholar
  70. Heggers JP, Cottingham J, Gusman J, Reagor L, McCoy L, Carino E, Cox R, Zhao JG (2002) The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J Altern Complement Med 8(3):333–340CrossRefGoogle Scholar
  71. Helander IM, Mattila-Sandholm T (2000) Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60(2):153–161CrossRefGoogle Scholar
  72. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90(12):1927–1936CrossRefGoogle Scholar
  73. Hoet P, Bruske-Hohlfeld I, Salata O (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2(1):12CrossRefGoogle Scholar
  74. Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, Orr BG, Baker JR, Banaszak Holl MM (2006) Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconj Chem 17(3):728–734CrossRefGoogle Scholar
  75. Hong YH, Lim GO, Song KB (2009) Physical properties of Gelidium corneum–gelatin blend films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. J Food Sci 74(1):C6–C10CrossRefGoogle Scholar
  76. Ibrahim HM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8(3):265–275CrossRefGoogle Scholar
  77. Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. BBA Gen Subj 1523(2):196–205CrossRefGoogle Scholar
  78. Janes ME, Kooshesh S, Johnson MG (2002) Control of Listeria monocytogenes on the surface of refrigerated, ready-to-eat chicken coated with edible zein film coatings containing nisin and/or calcium propionate. J Food Sci 67(7):2754–2757CrossRefGoogle Scholar
  79. Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42(12):821–826CrossRefGoogle Scholar
  80. Jayaprakasha GK, Selvi T, Sakariah KK (2003) Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int 36(2):117–122CrossRefGoogle Scholar
  81. Jia X, Li N, Chen J (2005) A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci 76(17):1989–2003CrossRefGoogle Scholar
  82. Jiang Z, Neetoo H, Chen H (2011) Control of Listeria monocytogenes on cold-smoked salmon using chitosan-based antimicrobial coatings and films. J Food Sci 76(1):M22–M26CrossRefGoogle Scholar
  83. Kabanov AV (2006) Polymer genomics: an insight into pharmacology and toxicology of nanomedicine. Adv Drug Deliver Rev 58(15):1597–1621CrossRefGoogle Scholar
  84. Kahrilas GA, Haggren W, Read RL, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain Chem Eng 2(4):590–598CrossRefGoogle Scholar
  85. Kang HJ, Jo C, Kwon JH, Kim JH, Chung HJ, Byun MW (2007) Effect of a pectin-based edible coating containing green tea powder on the quality of irradiated pork patty. Food Control 18(5):430–435CrossRefGoogle Scholar
  86. Ko KY, Mendonca AF, Ahn DU (2008) Effect of ethylenediaminetetraacetate and lysozyme on the antimicrobial activity of ovotransferrin against Listeria monocytogenes. Poult Sci 87(8):1649–1658CrossRefGoogle Scholar
  87. Krämer J, Brandis H (1975) Mode of action of two Streptococcus faecium bacteriocins. Antimicrob Agents Chemother 7(2):117–120CrossRefGoogle Scholar
  88. Lan Y, Lu Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2(5):1031–1045CrossRefGoogle Scholar
  89. Latif U, Al-Rubeaan K, Saeb AT (2015) A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. Int J Polym Mater 64(9):448–458CrossRefGoogle Scholar
  90. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269CrossRefGoogle Scholar
  91. Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci F 6(3):60–75CrossRefGoogle Scholar
  92. Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95(2):147–155CrossRefGoogle Scholar
  93. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201CrossRefGoogle Scholar
  94. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24(1):19–29CrossRefGoogle Scholar
  95. López-Caballero ME, Gómez-Guillén MC, Pérez-Mateos M, Montero P (2005) A chitosan-gelatin blend as a coating for fish patties. Food Hydrocolloid 19(2):303–311CrossRefGoogle Scholar
  96. Losso JN, Nakai S, Charter EA (2000) Lysozyme. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Ratón, pp 185–210Google Scholar
  97. Marcos B, Aymerich T, Monfort JM, Garriga M (2008) High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiol 25(1):177–182CrossRefGoogle Scholar
  98. Marugg JD (1991) Bacteriocins, their role in developing natural products. Food Biotechnol 5(3):305–312CrossRefGoogle Scholar
  99. Michalska-Pożoga I, Tomkowski R, Rydzkowski T, Thakur VK (2016) Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Ind Crops Prod 92:149–156CrossRefGoogle Scholar
  100. Mild RM, Joens LA, Friedman M, Olsen CW, McHugh TH, Law B, Ravishankar S (2011) Antimicrobial edible apple films inactivate antibiotic resistant and susceptible Campylobacter jejuni strains on chicken breast. J Food Sci 76(3):M163–M168CrossRefGoogle Scholar
  101. Millette MCLT, Le Tien C, Smoragiewicz W, Lacroix M (2007) Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control 18(7):878–884CrossRefGoogle Scholar
  102. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol 8(6):916–924CrossRefGoogle Scholar
  103. Natrajan N, Sheldon B (2000) Inhibition of Salmonella on poultry skin using protein and polysaccharide-based films containing a nisin formulation. J Food Prot 63(9):1268–1272CrossRefGoogle Scholar
  104. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  105. Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414CrossRefGoogle Scholar
  106. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25(3):471–478CrossRefGoogle Scholar
  107. Nikaido H (1996) Other mebrane. In: Neidhardt FC (ed) Escherichia coli and Salmonella cellular and molecular biology. D.C. ASM Press, Washington, pp 29–47Google Scholar
  108. Nychas GJE, Skandamis PN, Tassou CC (2003) Antimicrobials from herbs and spices. In: Roller S (ed) Natural antimicrobials for the minimal processing of foods. CRC Press, Washington, pp 177–199Google Scholar
  109. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRefGoogle Scholar
  110. Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  111. Oberdorster G, Oberdorster E, Oberdorster J (2007a) Concepts of nanoparticle dose metric and response metric. Environ Health Perspect 115(6):A290CrossRefGoogle Scholar
  112. Oberdorster G, Stone V, Donaldson K (2007b) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRefGoogle Scholar
  113. Othman SH, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy, pp 1–6Google Scholar
  114. Ouattara B, Simard RE, Piette G, Bejín A, Holler RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62(1):139–148CrossRefGoogle Scholar
  115. Ouattara B, Giroux M, Yefsah R, Smoragiewicz W, Saucier L, Borsa J, Lacroix M (2002) Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film. Radiat Phys Chem 63(3):299–304CrossRefGoogle Scholar
  116. Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M (2004) Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. J Agric Food Chem 52(18):5598–5605CrossRefGoogle Scholar
  117. Oussalah M, Caillet S, Saucier L, Lacroix M (2006a) Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J Food Prot 69(10):2364–2369CrossRefGoogle Scholar
  118. Oussalah M, Caillet S, Lacroix M (2006b) Mechanism of action of spanish oregano, chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69(5):1046–1055CrossRefGoogle Scholar
  119. Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2007) Antimicrobial effects of alginate-based film containing essential oils o Listeria monocytogenes and Salmonella thyphimurium present in bologna and ham. J Food Prot 70(4):901–908CrossRefGoogle Scholar
  120. Padgett T, Han IY, Dawson PL (1998) Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J Food Prot 61(10):1330–1335CrossRefGoogle Scholar
  121. Park SI, Stan SD, Daeschel MA, Zhao Y (2005) Antifungal coatings on fresh strawberries (Fragaria × ananassa) to control mold growth during cold storage. J Food Sci 70(4):M202–M207CrossRefGoogle Scholar
  122. Pen LT, Jiang YM (2003) Effects of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. LWT Food Sci Technol 36(3):359–364CrossRefGoogle Scholar
  123. Pérez-Calderón R, Gonzalo-Garijo MA, Lamilla-Yerga A, Mangas-Santos R, Moreno-Gaston I (2007) Recurrent angioedema due to lysozyme allergy. J Investig Allergol Clin 17(4):264–266Google Scholar
  124. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303CrossRefGoogle Scholar
  125. Pranoto Y, Salokhe VM, Rakshit SK (2005a) Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Res Int 38(3):267–272CrossRefGoogle Scholar
  126. Pranoto Y, Rakshit SK, Salokhe VM (2005b) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol 38(8):859–865CrossRefGoogle Scholar
  127. Rahman MAA, Mahmud S, Alias AK, Nor AFM (2013) Effect of nanorod zinc oxide on electrical and optical properties of starch-based polymer nanocomposites. J Phys Sci 24(1):17–28Google Scholar
  128. Raji V, Chakraborty M, Parikh PA (2012) Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity. Part Sci Technol 30(6):565–577CrossRefGoogle Scholar
  129. Raju PS, Bawa AS (2006) Food additives in fruit processing. In: Hui YH (ed) Handbook of fruits and fruit processing. Blackwell Publishing, Ames, pp 145–170CrossRefGoogle Scholar
  130. Ravishankar S, Zhu L, Olsen CW, McHugh TH, Friedman M (2009) Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products. J Food Sci 74(8):M440–M445CrossRefGoogle Scholar
  131. Raybaudi-Massilia RM, Mosqueda-Melgar J (2012) Polysaccharides as carriers and protectors of additives and bioactive compounds in foods. In: Karunaratn DN (ed) The complex world of polysaccharides. Editorial InTech, Rijeka, pp 429–454Google Scholar
  132. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008a) Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol 121(3):313–327CrossRefGoogle Scholar
  133. Raybaudi-Massilia RM, Rojas-Graü MA, Mosqueda-Melgar J, Martin-Belloso O (2008b) Comparative study on essential oils incorporated into an alginate-based edible coating to assure the safety and quality of fresh-cut fuji apples. J Food Prot 71(6):1150–1161CrossRefGoogle Scholar
  134. Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci F 8(3):157–180CrossRefGoogle Scholar
  135. Rojas-Graü MA, Avena-Bustillos RJ, Friedman M, Henika PR, Martín-Belloso O, McHugh TH (2006) Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. J Agric Food Chem 54(24):9262–9267CrossRefGoogle Scholar
  136. Rojas-Graü MA, Raybaudi-Massilia RM, Soliva-Fortuny RC, Avena-Bustillos RJ, McHugh TH, Martín-Belloso O (2007) Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol Technol 45(2):254–264CrossRefGoogle Scholar
  137. Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2009) Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci Technol 20(10):438–447CrossRefGoogle Scholar
  138. Rosales-Oballos Y, Raybaudi-Massilia R, Mosqueda-Melgar J, Tapia de Daza MS, Tomé-Boschian E (2012) Propiedades mecánicas, de barrera y antimicrobianas de películas de quitosano y películas de alginato de sodio con aceites esenciales y nisina. Revista de la Facultad de Farmacia y Bioquímica Universidad de los Andes. Venezuela 54(1):12–16Google Scholar
  139. Roszek B, de Jong W, Geertsma R (2005) Nanotechnology in medical applications: state-of-the-art in materials and devices. RIVM report. 265001001/2005Google Scholar
  140. Rozes N, Peres C (1998) Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl Microbiol Biotechnol 49(1):108–111CrossRefGoogle Scholar
  141. Russell-Jones GJ, Veitch H, Arthur L (1999) Lectin-mediated transport of nanoparticles across Caco-2 and OK cells. Int J Pharm 190(2):165–174CrossRefGoogle Scholar
  142. Saito M, Hosoyama H, Ariga T, Kataoka S, Yamaji N (1998) Antiulcer activity of grape seed extract and procyanidins. J Agric Food Chem 46(4):1460–1464CrossRefGoogle Scholar
  143. Salunke GR, Ghosh S, Kumar RS, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomed 9:2635Google Scholar
  144. Sangsuwan J, Rattanapanone N, Rachtanapun P (2008) Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biol Technol 49(3):403–410CrossRefGoogle Scholar
  145. Santiago-Silva P, Soares NF, Nóbrega JE, Júnior MA, Barbosa KB, Volp ACP, Zerdas ERMA, Würlitzer NJ (2009) Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 20(1):85–89CrossRefGoogle Scholar
  146. Sayanjali S, Ghanbarzadeh B, Ghiassifar S (2011) Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT Food Sci Technol 44(4):1133–1138CrossRefGoogle Scholar
  147. Scientific Committee on Emerging and Newly Identified Health Risk (SCENIHR) (2007) Opinion on: the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials European Commission Health and Consumer Protection Directorate-General. Directorate C—Public Health and Risk Assesment C7—Risk AssessmentGoogle Scholar
  148. Sebti I, Martial-Gros A, Carnet-Pantiez A, Grelier S, Coma V (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70(2):M100–M104CrossRefGoogle Scholar
  149. Seol KH, Lim DG, Jang A, Jo C, Lee M (2009) Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 °C. Meat Sci 83(3):479–483CrossRefGoogle Scholar
  150. Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39(5):639–644CrossRefGoogle Scholar
  151. Shankar S, Teng X, Li G, Rhim JW (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloid 45:264–271CrossRefGoogle Scholar
  152. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface 145(1):83–96CrossRefGoogle Scholar
  153. Shimamura T, Zhao WH, Hu ZQ (2007) Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti Infective Agents Med Chem 6(1):57–62 (Formerly Current Medicinal Chemistry-Anti-Infective Agents)CrossRefGoogle Scholar
  154. Silva GA (2007) Nanotechnology approaches for drug and small molecule delivery across the blood-brain barrier. Surg Neurol 67(2):113–116CrossRefGoogle Scholar
  155. Silvera-Almitrán C, Escobar-Giannini D, Repiso-Ibánez L, Márquez-Romero R (2012) Aplicaciones de películas y cubiertas comestibles y métodos combinados para mejorar sus propiedades. In: Olivas-Orozco GI, González-Aguilar GA, Martín-Belloso O, Soliva-Fortuny R (eds) Películas y recubrimientos comestibles. Propiedades y aplicaciones en alimentos. Clave Editorial, México, pp 497–518Google Scholar
  156. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782CrossRefGoogle Scholar
  157. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103(9):3357–3362CrossRefGoogle Scholar
  158. Siripatrawan U, Noipha S (2012) Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloid 27(1):102–108CrossRefGoogle Scholar
  159. Sobrino-López A, Martín-Belloso O (2008) Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 18(4):329–343CrossRefGoogle Scholar
  160. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefGoogle Scholar
  161. Stratford M, Eklund T (2003) Organic acids and esters. In: Russell NJ, Gould GW (eds) Food preservatives. Kluwer Academic/Plenum Publishers, Londres, pp 48–84CrossRefGoogle Scholar
  162. Szentkuti L (1997) Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J Control Release 46(3):233–242CrossRefGoogle Scholar
  163. Taheri S, Baier G, Majewski P, Barton M, Förch R, Landfester K, Vasilev K (2014) Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. J Mater Chem 2(13):1838–1845CrossRefGoogle Scholar
  164. Taylor PW, Hamilton-Miller JM, Stapleton PD (2005) Antimicrobial properties of green tea catechins. Food Sci Technol Bull 2:71Google Scholar
  165. Thakur VK, Kessler MR (2014a) Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials. Mater Today Commun 1(1–2):34–41CrossRefGoogle Scholar
  166. Thakur VK, Kessler MR (2014b) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460CrossRefGoogle Scholar
  167. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  168. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165CrossRefGoogle Scholar
  169. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014a) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4(35):18240–18249CrossRefGoogle Scholar
  170. Thakur VK, Grewell D, Thunga M, Kessler MR (2014b) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299(8):953–958CrossRefGoogle Scholar
  171. Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6(12):9349–9356CrossRefGoogle Scholar
  172. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4(1):1–17CrossRefGoogle Scholar
  173. Theivendran S, Hettiarachchy NS, Johnson MG (2006) Inhibition of Listeria monocytogenes by nisin combined with grape seed extract or green tea extract in soy protein film coated on turkey frankfurters. J Food Sci 71(2):M39–M44CrossRefGoogle Scholar
  174. Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87(2):316–321CrossRefGoogle Scholar
  175. Thomas LV, Clarkson MR, Delves-Broughton J (2000) Nisin. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Ratón, pp 463–524Google Scholar
  176. Tran CL, Danaldson K, Stones V, Fernandez T, Ford A, Christofi N, Ayres JG, Steiner M, Hurley JF, Aitken RJ, Seaton A (2005) A scoping study to identify hazard data needs for addressing risks presented by nanoparticles and nanotubes. Institute of Occupational Medicine (IOM) research report, Edinburgh, United KingdomGoogle Scholar
  177. US Food and Drug Administration (USFDA) (2006a) Food additives permitted for direct addition to food for human consumption 21CFR172, subpart C. Coatings, films and related substancesGoogle Scholar
  178. US Food and Drug Administration (USFDA) (2006b) GRAS substances (SCOGS) database.
  179. US Food and Drug Administration (USFDA) (2009) Everything added to food in the United States.
  180. US Food and Drug Administration (USFDA) (2010) Listing of food additive status Part I and Part II.
  181. Valencia-Chamorro SA, Pérez-Gago MB, del Río MÁ, Palou L (2009) Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored ‘Valencia’ oranges. Postharvest Biol Technol 54(2):72–79CrossRefGoogle Scholar
  182. Valodkar M, Sharma P, Kanchan DK, Thakore S (2010) Conducting and antimicrobial properties of silver nanowire-waxy starch nanocomposites. Int J Green Nanotechnol Phys Chem 2(1):P10–P19CrossRefGoogle Scholar
  183. Vargas M, Chiralt A, Albors A, González-Martínez C (2009) Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biol Technol 51(2):263–271CrossRefGoogle Scholar
  184. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  185. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63(5):505–515CrossRefGoogle Scholar
  186. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161(2):115–123CrossRefGoogle Scholar
  187. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185CrossRefGoogle Scholar
  188. Wang B, Feng WY, Wang M, Wang TC, Gu YQ, Zhu MT, Ouyang H, Shi JW, Zhang F, Zhao YL (2008) Acute toxicological impact of nano- and submicroscaled zinc oxide powder on healthy adult mice. J Nanopart Res 10(2):263–276CrossRefGoogle Scholar
  189. Wang J, Dong Z, Huang J, Li J, Liu K, Jin J, Ma J (2013) Synthesis of Ag nanoparticles decorated multiwalled carbon nanotubes using dialdehyde starch as complexant and reductant for antibacterial purposes. RSC Adv 3(3):918–922CrossRefGoogle Scholar
  190. Wang B, Mireles K, Rock M, Li Y, Thakur VK, Gao D, Kessler MR (2016) Synthesis and preparation of bio-based ROMP thermosets from functionalized renewable isosorbide derivative. Macromol Chem Phys 217(7):871–879CrossRefGoogle Scholar
  191. Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2002) Evaluation of photocatalytic disinfection of crude water for drinking-water production. J Photoch Photobiol A 147(3):241–246CrossRefGoogle Scholar
  192. Ye M, Neetoo H, Chen H (2008) Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 127(3):235–240CrossRefGoogle Scholar
  193. Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C 30(6):891–897CrossRefGoogle Scholar
  194. Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76(10):1099–1109CrossRefGoogle Scholar
  195. Zinoviadou KG, Koutsoumanis KP, Biliaderis CG (2010) Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloid 24(1):49–59CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of SciencesInstitute of Food Science and Technology (ICTA), Central University of Venezuela (UCV)CaracasVenezuela
  2. 2.Thermoplastic Composite Materials (CoMP) Group, Faculty of EngineeringInstitute of Research in Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Council of Scientific and Technical Research (CONICET)Mar del PlataArgentina

Personalised recommendations