Advertisement

Multicomponent, Semi-interpenetrating-Polymer-Network and Interpenetrating-Polymer-Network Hydrogels: Smart Materials for Biomedical Applications

Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Multicomponent, semi-IPN, or IPN hydrogels are interesting materials which are composed of at least two different components and are able to respond to various stimuli, that is the change in certain properties of the medium such as temperature, pH, ion concentration, and so on. Based on this unique feature, these environmentally responsive materials may find use in biomedical applications in terms of changes in the properties of the medium in the human organism which occur naturally or induced by an outside source. Environmentally responsive hydrogels respond to changes in the physical, chemical, or biological properties of the medium by exhibiting a change in their size, shape, color, solubility, and so on. They can be fabricated from natural or synthetic components by a number of production methods including physical cross-linking and chemical cross-linking techniques as well as other novel fabrication methods such as cross-linking with genetically engineered protein domains. Environmentally responsive hydrogels have found in various subfields of the biomedical research area including drug delivery, biosensors, tissue engineering, actuators, and so on. Whereas hydrogels are promising materials, there are some drawbacks which should be overcome before these materials can be used clinically. To address the major concerns, the response rates should be increased while maintaining the necessary mechanical performance. Biodegradability and biocompatibility are other development fields. Environmentally responsive hydrogels with the desired properties can be prepared by use of the right components, production methods and forming the right polymer architecture.

Keywords

Hydrogels Smart materials Environmentally-responsive Stimuli-responsive Environmental-sensitive Biomedical materials 

References

  1. Agarwal AK, Sridharamurthy SS, Beebe DJ, Jiang H (2005) Programmable autonomous micromixers and micropumps. J Microelectromech Syst 14:1409–1421CrossRefGoogle Scholar
  2. Akala Emmanuel O, Kopeckova Pavla, Kopecek Jindrich (1998) Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials 19(11–12):1037–1047. doi: 10.1016/S0142-9612(98)00023-4 CrossRefGoogle Scholar
  3. Al-Assaf S, Dickson P, Phillips GO, Thompson C, Torres JC (2009) Compositions comprising polysaccharide gums, vol WO2009/016362 A2. Phillips Hydrocolloid Research Limited (UK), Reckitt Benckiser (UK)Google Scholar
  4. Aoki H, Al-Assaf S, Katayama T, Phillips GO (2007a) Characterization and properties of Acacia senegal (L.) Willd. Var. Senegal with enhanced properties (Acacia (Sen) SUPER GUM(TM)): part 2—mechanism of the maturation process. Food Hydrocolloids 21:329–337CrossRefGoogle Scholar
  5. Aoki H, Katayama T, Ogasawara T, Sasaki Y, Al-Assaf S, Phillips GO (2007b) Characterization and properties of Acacia senegal (L.) Willd. Var. Senegal with enhanced properties (Acacia (Sen) SUPER GUM(TM)): Part 5. Factors affecting the emulsification of Acacia senegal and Acacia (Sen) SUPER GUM(TM). Food Hydrocoll 21:353–358CrossRefGoogle Scholar
  6. Asoh T-A, Kikuchi A (2010) Electrophoretic adhesion of stimuli-responsive hydrogels. Chem Commun 46:7793–7795CrossRefGoogle Scholar
  7. Asoh T-A, Matsusaki M, Kaneko T, Akashi M (2008) Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv Mater 20:2080–2083CrossRefGoogle Scholar
  8. Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, Arce FT, Lal R, Arya G, Varghese S (2011) Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials 32(15):3700–3711CrossRefGoogle Scholar
  9. Bajpai AK, Shrivastava J (2005) In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polym Int 54:1524–1536CrossRefGoogle Scholar
  10. Banta S, Wheeldon IR, Blenner M (2010) Protein engineering in the development of functional hydrogels. Annu Rev Biomed Eng 12(1):167–186. doi: 10.1146/annurev-bioeng-070909-105334 CrossRefGoogle Scholar
  11. Bassik N, Abebe BT, Laflin KE, Gracias DH (2010) Photolithographically patterned smart hydrogel based bilayer actuators. Polymer 50:6093–6098CrossRefGoogle Scholar
  12. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRefGoogle Scholar
  13. Chang C, Zhang L (2011) Cellulosebased hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  14. Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127CrossRefGoogle Scholar
  15. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Selmani A, Atkinson BL, Binette F (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRefGoogle Scholar
  16. Costa-Almeida R, Tamayol A, Yazdi IK, Avci H, Fallahi A, Annabi N, Reis RL, Gomes ME, Khademhosseini A (2016) Mechanically reinforced hydrogel fibers for tendon tissue engineering. In: 5th Portuguese young chemists meeting (5th PYCheM) and 1st European young chemists meeting (1st EYCheM). Guimarães, PortugalGoogle Scholar
  17. Dai WS, Barbari TA (1999) Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol). J Membr Sci 156:67–79CrossRefGoogle Scholar
  18. de Jong SJ, De Smedt SC, Wahls MWC, Demeester J, Kettenes-van den Bosch JJ, Hennink WE (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRefGoogle Scholar
  19. De La Rosa VR, Woisel P, Hoogenboom R (2016) Supramolecular control over thermoresponsive polymers. Mater Today 19(1):44–55. doi: 10.1016/j.mattod.2015.06.013 CrossRefGoogle Scholar
  20. de Nooy AEJ, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259–267CrossRefGoogle Scholar
  21. Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3:1223–1230CrossRefGoogle Scholar
  22. Dusek K, Patterson D (1968) Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci A 6:1209–1216CrossRefGoogle Scholar
  23. Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials. Springer, JapanCrossRefGoogle Scholar
  24. Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristic. Nat Mater 4(4):298–302CrossRefGoogle Scholar
  25. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32:5561–5566CrossRefGoogle Scholar
  26. El-Sherbiny I, Yacoub N (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Global Cardiol Sci Pract 3:316–342. doi: 10.5339/gcsp.2013.38 Google Scholar
  27. Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DCC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437:999–1002CrossRefGoogle Scholar
  28. Esteban C, Severian D (2000) Polyionic hydrogels based on xanthan and chitosan for stabilising and controlled release of vitamins. WO0004086, issued 2000Google Scholar
  29. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317:1366–1370CrossRefGoogle Scholar
  30. Fernandez-Tarrio M, Yañez F, Immesoete K, Alvarez-Lorenzo C, Concheiro A (2008) Pluronic and tetronic copolymers with polyglycolyzed oils as self-emulsifying drug delivery systems. AAPS PharmSciTech 9(2):471–479CrossRefGoogle Scholar
  31. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61CrossRefGoogle Scholar
  32. Gerlach G, Arndt K-F (2009) Hydrogel sensors and actuators: engineering and technology. Springer, New YorkGoogle Scholar
  33. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158CrossRefGoogle Scholar
  34. Gupta M, Gupta AK (2004) In-vitro cytotoxicity studies of hydrogels pullulan nanoparticles prepared by AOT/n-hexane micellar system. J Pharm Pharm Sci 7(1):38–46Google Scholar
  35. Gupta AK, Siddiqui AW (2012) Environmental responsive hydrogels: a novel approach in drug delivery system. J Drug Deliv Therap 2(1):1–8. http://www.academia.edu/1389831/ENVIRONMENTAL_RESPONSIVE_HYDROGELS_A_NOVEL_APPROACH_IN_DRUG_DELIVERY_SYSTEM
  36. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic ± inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120–1124CrossRefGoogle Scholar
  37. Hassan CM, Doyle FJI, Peppas NA (1997) Dynamic behavior of glucose-responsive poly(methacrylic acid–g-ethylene glycol) hydrogels. Macromolecules 30:6166–6173CrossRefGoogle Scholar
  38. Hennink WE, Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefGoogle Scholar
  39. Hoffman AS (1997) Intelligent polymers. In: Park K (ed) Controlled drug delivery: challenge and strategies. American Chemical Society, Washington, DC, pp 485–497Google Scholar
  40. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12CrossRefGoogle Scholar
  41. Hovgaard L, Brondsted H (1995) Dextran hydrogels for colon-specific drug delivery. J Control Release 36(1–2):159–166. doi: 10.1016/0168-3659(95)00049-E CrossRefGoogle Scholar
  42. Hrouz J, Ilavský M, Ulbrich K, Kopeček J (1981) The photoelastic behaviour of dry and swollen networks of poly(N,N-diethylacrylamide) and of Its copolymers with N-Tert. butylacrylamide. Eur Polym J 17:361–366CrossRefGoogle Scholar
  43. Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–527CrossRefGoogle Scholar
  44. Hua L (2009) Smart hydrogel modelling. Springer, New YorkGoogle Scholar
  45. Huang CC, Ravindran S, Yin Z, George A (2014) 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 35(20):5316–5326CrossRefGoogle Scholar
  46. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151–158CrossRefGoogle Scholar
  47. Jafari B, Rafie F, Davaran S (2011) Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. BioImpacts 1:135–143Google Scholar
  48. Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775CrossRefGoogle Scholar
  49. Jin Y, Yamanaka J, Sato S, Miyata I, Yomota C, Yonese M (2001) Recyclable characteristics of hyaluronate–polyhydroxyethyl acrylate blend hydrogel for controlled releases. J Control Release 73:173–181CrossRefGoogle Scholar
  50. Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk ZY, Zhong CA, Feijena J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551CrossRefGoogle Scholar
  51. Kang SI, Bae YH (2003) A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J Control Release 86(1):115–121CrossRefGoogle Scholar
  52. Khan GMA, Yilmaz ND, Yilmaz K (2016) Recent developments in design and manufacturing of biocomposites of bombyx mori silk fibroin. In: Handbook of composites from renewable materials. Wiley Scrivener, USAGoogle Scholar
  53. Khodamoradi N, Khodamoradi P (2014) A brief review on application of smart hydrogels in drug delivery. In: International conference on chemistry, biomedical and environment engineering, Antalya, pp 28–33. doi: 10.17758/IAAST.A1014025
  54. Kim W (2013) Recombinant protein polymers in biomaterials. Front Biosci 18:289–304CrossRefGoogle Scholar
  55. Kim JJ, Park K (2001) Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. J Control Release 77(1–2):39–47CrossRefGoogle Scholar
  56. Kim MS, Park K (2012) Injectable hydrogels. In: B Bhusnan (ed). Springer, BerlinGoogle Scholar
  57. Kim SJ, Yoon SG, Lee SM, Lee JH, Kim SI (2003) Characteristics of electrical responsive alginate/poly(diallyldimethylammonium chloride) IPN hydrogel in HCl solutions. Sens Actuators B Chem 96(1–2):1–5CrossRefGoogle Scholar
  58. Kim S, Chung EH, Gilbert M, Healy KE (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-Co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res Part A 75A:73–88CrossRefGoogle Scholar
  59. Kim Y-J, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and releases cells. Angew Chem Int 51:10537–10541CrossRefGoogle Scholar
  60. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192CrossRefGoogle Scholar
  61. Kopeček J, Yang J (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5(3):805–816. doi: 10.1126/scisignal.2001449.Engineering CrossRefGoogle Scholar
  62. Kuijpers AJ, van Wachem PB, van Luyn MJA, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336CrossRefGoogle Scholar
  63. Kumar A, Srivastava A (2010) Cell separation using cryogel-based affinity chromatography. Nat Protoc 5:1737–1747. doi: 10.1038/nprot.2010.135 CrossRefGoogle Scholar
  64. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926CrossRefGoogle Scholar
  65. Lee KK, Cussler EL, Marchetti M, McHugh MA (1990) Pressure-dependent phase transitions in hydrogels. Chem Eng Sci 45:766–767CrossRefGoogle Scholar
  66. Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170CrossRefGoogle Scholar
  67. Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65(1):17–20. doi: 10.1016/j.addr.2012.07.015 CrossRefGoogle Scholar
  68. Li Y, Liu C, Tan Y, Xu K, Lu C, Wang P (2014) In situ hydrogel constructed by starch-based nanoparticles via a Schiff base reaction. Carbohydr Polym 110:87–94CrossRefGoogle Scholar
  69. Lim DW, Park TG (2000) Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J Appl Polym Sci 75:1615–1623CrossRefGoogle Scholar
  70. Lim HL, Hwang Y, Kar M, Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2(5):603–618. doi: 10.1039/c3bm60288e CrossRefGoogle Scholar
  71. Luchini A, Geho DH, Bishops B, Tran D, Xia C, Dufour RL, Jones CD et al (2008) Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett 8(1):350–361. doi: 10.1021/nl072174l CrossRefGoogle Scholar
  72. Luchnikov V, Sydorenko O, Stamm M (2005) Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. Adv Mater 17:1177–1182CrossRefGoogle Scholar
  73. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184CrossRefGoogle Scholar
  74. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23:47–55CrossRefGoogle Scholar
  75. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484CrossRefGoogle Scholar
  76. Magnin D, Lefebvre J, Chornet E, Dumitriu S (2004) Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr Polym 55(4):437–453CrossRefGoogle Scholar
  77. Martens P, Anseth KS (2000) Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 41:7715–7722CrossRefGoogle Scholar
  78. Mateescu A, Wang Y, Dostalek J, Jonas U (2012) Thin hydrogel films for optical biosensor applications. Membranes 2(1):49–69. doi: 10.3390/membranes2010040 Google Scholar
  79. Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y (2012) A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Ed 51:2124–2128CrossRefGoogle Scholar
  80. Maziad NA, El-hamouly S, Zied E, EI-Kelani TA, Nasef NR (2015) Radiation preparation of smart hydrogel has antimicrobial properties for controlled release of ciprofloxacin in drug delivery systems. Asian J Pharm Clin Res 8(3):193–200Google Scholar
  81. Megeed Z, Cappello J, Ghandehari H (2002) Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 54:1075–1091CrossRefGoogle Scholar
  82. Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79(2):245–253CrossRefGoogle Scholar
  83. Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 86(2):444–452. doi: 10.1002/jbm.b.31040 CrossRefGoogle Scholar
  84. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRefGoogle Scholar
  85. Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54(1):79–98. doi: 10.1016/S0169-409X(01)00241-1 CrossRefGoogle Scholar
  86. Miyata T, Jige M, Nakaminami T, Uragami T (2006) Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci U S A 103:1190–1193CrossRefGoogle Scholar
  87. Molinaro G, Leroux J-C, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomacromolecules 23:2717–2722Google Scholar
  88. Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson DH, Akiyoshi K (2013) Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1):56–63CrossRefGoogle Scholar
  89. Moschou EA, Bachas LG, Daunert S (2008) Smart hydrogel materials. Handbook of biosensors and biochips. Part three. Wiley, New YorkGoogle Scholar
  90. Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6(6):2927–2929CrossRefGoogle Scholar
  91. Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17. doi: 10.1016/S0168-3659(03)00303-1 CrossRefGoogle Scholar
  92. Na K, Bae YH (2004) Self assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation and adriamycin release in-vitro. Pharm Res 19(5):681–688CrossRefGoogle Scholar
  93. Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, Bahrami AR, Ringe J (2014) Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 38(1):72–84CrossRefGoogle Scholar
  94. Nagarkar S, Nicolai T, Chassenieux C, Lele A (2010) Structure and gelation mechanism of silk hydrogels. Phys Chem Chem Phys 12(15):3834–3844. doi: 10.1039/b916319k CrossRefGoogle Scholar
  95. Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci 98:1404–1408CrossRefGoogle Scholar
  96. Okumura Y, Ito K (2001) The polyrotaxane gels: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRefGoogle Scholar
  97. Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sens Actuators A Phys 157:96–99Google Scholar
  98. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRefGoogle Scholar
  99. Oya T, Enoki T, Grosberg AY, Masamune S, Sakiyama T, Takeoka Y, Tanaka K et al (1999) Reversible molecular adsorption based on multiple-point interaction by shrinkable gels. Science 286:1543–1545CrossRefGoogle Scholar
  100. Peppas NA (2004) Hydrogels. In: Ratner BD (ed) Biomaterials science: an introduction to materials in medicine. Academic Press, California, pp 100–107Google Scholar
  101. Peppas NA, Klier J (1991) Controlled release by using poly(methacrylic acid–g-ethylene glycol) hydrogels. J Control Release 16:203–214CrossRefGoogle Scholar
  102. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392CrossRefGoogle Scholar
  103. Phadke A, Zhang C, Arman B, Hsu C-C, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) From the cover: rapid self-healing hydrogels. Proc Natl Acad Sci 109(12):4383–4388. doi: 10.1073/pnas.1201122109 CrossRefGoogle Scholar
  104. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20(12):2555–2565. doi: 10.1016/j.bios.2004.10.002 CrossRefGoogle Scholar
  105. Pourjavadi A, Zohuriaan-Mehr MJ (2002) Modification of carbohydrate polymers via grafting in air. 2. Ceric-Initiated graft copolymerization of acrylonitrile onto natural and modified polysaccharides. Starch-Starke 54:482–488CrossRefGoogle Scholar
  106. Pourjavadi A, Barzegar S, Zeidabadi F (2007) Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-Co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym 67(7):644–654CrossRefGoogle Scholar
  107. Priya James H, John R, Alex A (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4(2):120–127. doi: 10.1016/j.apsb.2014.02.005 CrossRefGoogle Scholar
  108. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRefGoogle Scholar
  109. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60. doi: 10.1016/j.addr.2012.09.024 CrossRefGoogle Scholar
  110. Rolinski OJ, Birch DJS, McCartney LJ, Pickup JC (2001) Sensing metabolites using donor–acceptor nanodistributions in fluorescence resonance energy transfer. Appl Phys Lett 78:2796–2798CrossRefGoogle Scholar
  111. Sadeghi M (2011) Synthesis of starch-g-poly(acrylic acid-co-2-hydroxy ethyl methacrylate) as a potential pH-sensitive hydrogel-based drug delivery system. Turk J Chem 35:723–733Google Scholar
  112. Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61:397–404CrossRefGoogle Scholar
  113. Salinas CN, Cole BB, Kasko AM, Anseth KS (2007) Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng 13:1025–1034CrossRefGoogle Scholar
  114. Sandeep C, Harikumar SL, Kanupriya (2012) Hydrogels: a smart drug delivery system. Int J Res Pharm Chem 2(3):603–614Google Scholar
  115. Sato T, Ebara M, Tanaka S, Asoh T-A, Kikuchi A, Aoyagi T (2013) Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions. PCCP 15:10628–10635CrossRefGoogle Scholar
  116. Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ (2014) Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem 5:6180–6189CrossRefGoogle Scholar
  117. Smart Hydrogels for Biomedical Applications (2015) AachenGoogle Scholar
  118. Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly(N-Isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32:7370–7379CrossRefGoogle Scholar
  119. Stoychev G, Puretskiy N, Ionov L (2011) Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7:3277–3279CrossRefGoogle Scholar
  120. Strain DE, Kennelly RG, Dittmar HR (1939) Methacrylate resins. Ind Eng Chem 31:382–387CrossRefGoogle Scholar
  121. Sumaru K, Ohi K, Takagi T, Kanamori T, Shinbo T (2006) Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22:4353–4356CrossRefGoogle Scholar
  122. Syrett JA, Becer CR, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem UK 1:978–987CrossRefGoogle Scholar
  123. Ta HT, Dass CR, Dunstan DE (2008) Injectable chitosan hydrogels for localised cancer therapy. J Control Release 126(3):205–216CrossRefGoogle Scholar
  124. Tae G, Kornfeld JA, Hubbell JA (2005) Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). Biomaterials 26(25):5259–5266CrossRefGoogle Scholar
  125. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat Commun 3:1270CrossRefGoogle Scholar
  126. Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32(3):713–716Google Scholar
  127. Tan H, Chub CR, Payneb KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506CrossRefGoogle Scholar
  128. Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823CrossRefGoogle Scholar
  129. Tang M, Zhang R, Bowyer A, Eisenthal R, Hubble J (2004) NAD-sensitive hydrogel for the release of macromolecules. Biotechnol Bioeng 87:791–796CrossRefGoogle Scholar
  130. Tanigo T, Takaoka R, Tabata Y (2010) Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Control Release 143:201–206CrossRefGoogle Scholar
  131. Techawanitchai P, Ebara M, Idota N, Aoyagi T (2012a) Light-induced spatial control of pH jump reaction at smart gel interface. Colloids Surf B Biointerfaces 99:53–59CrossRefGoogle Scholar
  132. Techawanitchai P, Ebara M, Idota N, Asoh T-A, Kikuchi A, Aoyagi T (2012b) Photoswitchable control of pH-responsive actuators via pH jump reaction. Soft Matter 8:2844–2851CrossRefGoogle Scholar
  133. Thakur VK, Kessler MR (2014a) Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials. Mater Today Commun 1(1–2):34–41CrossRefGoogle Scholar
  134. Thakur VK, Kessler MR (2014b) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460CrossRefGoogle Scholar
  135. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  136. Thakur VK, Thakur MK (2014a) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  137. Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  138. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefGoogle Scholar
  139. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165CrossRefGoogle Scholar
  140. Thakur VK, Thakur MK, Gupta RK (2013a) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25CrossRefGoogle Scholar
  141. Thakur VK, Thakur MK, Gupta RK (2013b) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828CrossRefGoogle Scholar
  142. Thakur VK, Singha AS, Thakur MK (2013c) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32(S1):E741–E748CrossRefGoogle Scholar
  143. Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18(7):495–503CrossRefGoogle Scholar
  144. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4(1):1–17CrossRefGoogle Scholar
  145. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R (1992) Stereocomplex formation between enantiomeric poly(lactic Acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state Carbon-13 NMR spectroscopy. Macromolecules 25:4114–4118CrossRefGoogle Scholar
  146. Vakkalanka SK, Brazel CS, Peppas NA (1996) Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Poly Ed 8:119–129CrossRefGoogle Scholar
  147. Valuev IL, Vanchugova LV, Valuev LI (2011) Glucose-sensitive hydrogel systems. Polym Sci Ser A 53(5):385–389. doi: 10.1134/S0965545X11050099 CrossRefGoogle Scholar
  148. Vanag VK, Yang L, Dolnik M, Zhabotinsky AM, Epstein IR (2000) Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature 406:389–391CrossRefGoogle Scholar
  149. Varghese S, Lele AK, Srinivas D, Sastry M, Mashelkar RA (2001) Novel macroscopic self-organization in polymer gels. Adv Mater 13:1544–1548CrossRefGoogle Scholar
  150. Vrana NE, O’Grady A, Kay E, Cahill PA, McGuinness GB (2009) Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med 3(7):567–572CrossRefGoogle Scholar
  151. Wan W-K, Millon L (2006) Poly(vinyl alcohol)-bacterial cellulose nanocomposite. EP1660147 A1, issued 2006Google Scholar
  152. Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(6718):417–420CrossRefGoogle Scholar
  153. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRefGoogle Scholar
  154. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  155. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  156. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218CrossRefGoogle Scholar
  157. Xu C, Kopeček J (2008) Genetically engineered block copolymers: influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly. Pharm Res 25(3):674–682CrossRefGoogle Scholar
  158. Xu C, Breedveld V, Kopecek J (2005) Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6(3):1739–1749CrossRefGoogle Scholar
  159. Kumar A (n.d.) Smart polymeric biomaterials: where chemistry and biology can mergeGoogle Scholar
  160. Yanga J-A, Yeoma J, Hwanga BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39(12):1973–1986CrossRefGoogle Scholar
  161. Yilmaz ND (2009) Acoustic properties of biodegradable nonwovens. NC State University, RaleighGoogle Scholar
  162. Yilmaz ND (2015a) Agro-residual fibers as potential reinforcement elements for biocomposites. In: Thakur VK (ed) Lignocellulosic polymer composites: processing, characterization and properties. Wiley Scrivener, Hoboken, pp 233–270Google Scholar
  163. Yilmaz ND (2015b) Biomedical applications of microbial cellulose nanocomposites. In: Biodegradable polymeric nanocomposites: advances in biomedical applications. Wiley Scrivener, Hoboken, pp 231–249Google Scholar
  164. Yilmaz ND, Powell NB (2015) Biocomposite structures as noise control elements. In: Thakur VK, Kessler M (eds) Green biorenewable biocomposites: from knowledge to industrial applications, vol 405. Apple Academic Press/CRC Press, Boca RatonGoogle Scholar
  165. Yilmaz ND, Cilgi GK, Yilmaz K (2015) Natural polysaccharides as pharmaceutical excipients. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, Volume 3, biodegradable polymers. Wiley Scrivener, Hoboken, pp 483–516Google Scholar
  166. Yilmaz ND, Khan GMA, Yilmaz K (2016) Biofiber reinforced acrylated epoxidized soybean oil (AESO) Composites. In: Thakur VK, Thakur MK (eds) Handbook of composites from renewable materials. Wiley Scrivener, HobokenGoogle Scholar
  167. Yoshida R, Okano T (2010) Stimuli-responsive hydrogels and their application to functional materials. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 19–43CrossRefGoogle Scholar
  168. Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H et al (2011) Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244CrossRefGoogle Scholar
  169. Zhang C, Losego MD, Braun PV (2013) Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater 25(15):3239–3250CrossRefGoogle Scholar
  170. Zhao QS, Ji QX, Xing K, Li XY, Liu CS, Chen XG (2009) Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate. Carbohydr Polym 76:410–416CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Textile EngineeringPamukkale UniversityDenizliTurkey

Personalised recommendations