Skip to main content

Future Biofuel Production and Water Usage

  • Chapter
  • First Online:
Perspectives on Water Usage for Biofuels Production

Abstract

Biofuel in particular, together with the rising demands for food, have the highest prospects for an increase in agricultural water withdrawals. The water-biofuel relationship is being recognized as backbone of the factors fundamental for the future sustainable supply of water and biofuel. A better understanding of the subject is essential to adopt superior technologies that may improve use of water for biofuel production in efficient way. This chapter presents prospective and future trends of the water-biofuel relationship and impacts of additional water usage in future increased biofuel production. The importance of technological innovation to save water and future impacts on water quantity and especially on water quality will be assessed in terms of safe keeping the environment. The obligation of reusing wastewater and application of undiluted wastewater to grow feedstock for biofuel to save freshwater resources will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 2030 Water Resources Group. 2009. Charting Our Water Future: Economic frameworks to inform decision-making http://www.2030waterresourcesgroup.com/water_full/Charting_Our_Water_Future_Final.pdf; Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO; 2012.

  • Adler PR, delGrosso SJ, Parton WJ. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl. 2007;17:675–91.

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision (No. 12–03, p. 4). Rome, FAO: ESA Working paper; 2012.

    Google Scholar 

  • Arshad M. Bioethanol: a sustainable and environment friendly solution for Pakistan. A Sci J COMSATS–Sci. Vision. 2010;16–7.

    Google Scholar 

  • Arshad M, Ahmed S. Cogeneration through bagasse: a renewable strategy to meet the future energy needs. Renew Sust Energ Rev. 2016;54:732–7.

    Article  Google Scholar 

  • Arshad M, Khan ZM, Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008;47:410–4.

    Article  Google Scholar 

  • Arshad M, Zia MA, Asghar M, Bhatti H. Improving bio-ethanol yield: using virginiamycin and sodium flouride at a Pakistani distillery. Afr J Biotechnol. 2011;10:11071.

    Article  Google Scholar 

  • Arshad M, Adil M, Sikandar A, Hussain T. Exploitation of meat industry by-products for biodiesel production: Pakistan’s perspective. Pakistan J Life Soc Sci. 2014a;12:120–5.

    Google Scholar 

  • Arshad M, Ahmed S, Zia MA, Rajoka MI. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol. 2014b;172:2455–64.

    Article  Google Scholar 

  • Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian J Microbiol. 2017. doi:10.1016/j.bjm.2017.02.003.

  • Bakker K, Morinville C. The governance dimensions of water security: a review. Phil Trans R Soc A. 2013;371:20130116.

    Article  Google Scholar 

  • Chartres C, Sood A. The water for food paradox. Aquatic Proc. 2013;1:3–19.

    Article  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  Google Scholar 

  • Conforti P. Looking ahead in world food and agriculture: perspectives to 2050. Food and Agriculture Organization of the United Nations (FAO). 2011.

    Google Scholar 

  • Cosgrove WJ, Rijsberman FR. World water vision: making water everybody’s business. Routledge; 2014 Mar 18.

    Google Scholar 

  • Creutzig F, Goldschmidt JC, Lehmann P, Schmid E, von Blücher F, Breyer C, Fernandez B, Jakob M, Knopf B, Lohrey S, Susca T. Catching two European birds with one renewable stone: mitigating climate change and Eurozone crisis by an energy transition. Renew Sust Energ Rev. 2014;38:1015–28.

    Article  Google Scholar 

  • Damerau K, Patt AG, van Vliet OP. Water saving potentials and possible trade-offs for future food and energy supply. Glob Environ Change. 2016;39:15–25.

    Article  Google Scholar 

  • de Cerqueira Leite RC, Leal MR, Cortez LA, Griffin WM, Scandiffio MI. Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy. 2009;34:655–61.

    Article  Google Scholar 

  • Dennis RA, Colfer CP. Impacts of land use and fire on the loss and degradation of lowland forest in 1983–2000 in East Kutai District, East Kalimantan, Indonesia. Singapore J Trop Geogr. 2006;27:30–48.

    Article  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol. 2003;63:258–66.

    Article  Google Scholar 

  • Dominguez-Faus R, Powers SE, Burken JG, Alvarez PJ. The water footprint of biofuels: a drink or drive issue? Environ Sci Technol. 2009;43:3005–10.

    Article  Google Scholar 

  • EEA (European Environment Agency). How much bioenergy can Europe produce without harming the environment? Report 7/2006, ISSN 1725–9177. EEA, Copenhagen. 2006.

    Google Scholar 

  • Eggert H, Greaker M. Promoting second generation biofuels: does the first generation pave the road? Energies. 2014;7:4430–45.

    Article  Google Scholar 

  • Fargione JE, Plevin RJ, Hill JD. The ecological impact of biofuels. Ann Rev Ecol Evol Syst. 2010;4:351–77.

    Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM. Ethanol can contribute to energy and environmental goals. Science. 2006;311:506–8.

    Article  Google Scholar 

  • Fingerman KR, Torn MS, O’Hare MH, Kammen DM. Accounting for the water impacts of ethanol production. Environ Res Lett. 2010;5:014020.

    Article  Google Scholar 

  • Gasparatos A, Stromberg P, Takeuchib K. Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. Agric Ecosys Environ. 2011;142:111–28.

    Article  Google Scholar 

  • Gerbens-Leenes PW, Hoekstra AY, Meer TH. Water footprint of bio-energy and other primary energy carriers. 2008.

    Google Scholar 

  • Graham RL, Liu W, English BC. The environmental benefits of cellulosic energy crops at a landscape scale. Environmental enhancement through agriculture: proceedings of a conference. Center for Agriculture, Food and Environment, Tufts University, Medford, Massachusetts. 1995.

    Google Scholar 

  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10:141–6.

    Article  Google Scholar 

  • Griffing EM, Schauer RL, Rice CW. Life cycle assessment of fertilization of corn and corn–soybean rotations with swine manure and synthetic fertilizer in Iowa. J Environ Quality. 2014;43:709–22.

    Article  Google Scholar 

  • Groom MJ, Gray EM, Townsend PA. Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol. 2008;22:602–9.

    Article  Google Scholar 

  • Hanjra MA, Qureshi ME. Global water crisis and future food security in an era of climate change. Food Policy. 2010;35:365–77.

    Article  Google Scholar 

  • Hardy L, Garrido A, Juana L. Evaluation of Spain’s water-energy nexus. Int J Water Resour Dev. 2012;28:151–70.

    Article  Google Scholar 

  • Hertel TW, Golub A, Jones AD, O’Hare M, Plevin RJ, Kammen DM. Global land use and greenhouse gas emissions impacts of U.S. maize ethanol: estimating market-mediated responses. Bio Sci. 2010;60:223–31.

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103:11206–10.

    Article  Google Scholar 

  • Jiménez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG, Doll P, Jiang T, Mwakalila SS. Fresh water resources. 2014:229–69.

    Google Scholar 

  • Joly CA, Huntley BJ, Dale VH, Mace G, Muok B, Ravindranath NH. Biofuel impacts on biodiversity and ecosystem services. Scientific Committee on problems of the environment (SCOPE) rapid assessment process on bioenergy and sustainability. 2015;555–80.

    Google Scholar 

  • Junginger M, Faaij A, Rosillo-Calle F, Wood J. The growing role of biofuels: opportunities, challenges, and pitfalls. Int Sugar J. 2006;108:615–29.

    Google Scholar 

  • Kalscheuer R, St¨oveken T, Steinb¨uchel A. Engineered microorganisms for sustainable production of diesel fuel and other oleochemicals. Int Sugar J. 2006;109:1127.

    Google Scholar 

  • Khan S, Khan MA, Hanjra MA, Mu J. Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy. 2009;34:141–9.

    Article  Google Scholar 

  • Lal R. Soil and environmental implications of using crop residues as biofuel feedstock. Int Sugar J. 108:161–7.

    Google Scholar 

  • Larson DF. Introducing water to an analysis of alternative food security policies in the Middle East and North Africa. Aquat Proc. 2013;1:30–43.

    Article  Google Scholar 

  • Lawton RJ, Cole AJ, Roberts DA, Paul NA, de Nys R. The industrial ecology of freshwater macroalgae for biomass applications. Algal Res. 2016.

    Google Scholar 

  • Lele U, Klousia-Marquis M, Goswami S. Good governance for food, water and energy security. Aquat Procedia. 2013;1:44–63.

    Article  Google Scholar 

  • Macknick J, Newmark R, Heath G, Hallett KC. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ Res Lett. 2012;7:045802.

    Article  Google Scholar 

  • Mason L, Boyle T, Fyfe J, Smith T, Cordell D. National food waste data assessment: final report. Prepared for the Department of Sustainability, Environment, Water, Population and Communities. Sydney, Australia: Institute for Sustainable Futures, University of Technology. 2011.

    Google Scholar 

  • Millennium Ecosystem Assessment. Ecosystems and human wellbeing: biodiversity synthesis. World Resources Institute, Washington, D.C. 2005.

    Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD). Environmental outlook to 2050: The consequences of inaction. Paris: OECD; 2012.

    Google Scholar 

  • Parrish DJ, Fike JH. The biology and agronomy of switchgrass for biofuels. Criti Rev Plant Sci. 2005;24:423–59.

    Article  Google Scholar 

  • Perrone D, Murphy J, Hornberger GM. Gaining perspective on the water an energy nexus at the community scale. Environ Sci Technol. 2011;45:4228–34.

    Article  Google Scholar 

  • Powlson DS, Richie AB, Shield I. Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol. 2005;146:193–201.

    Article  Google Scholar 

  • Raboni M, Viotti P, Capodaglio AG. A comprehensive analysis of the current and future role of biofuels for transport in the European Union (EU). Revista Ambiente Agua. 2015;10:9–21.

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.

    Article  Google Scholar 

  • Rasul G. Food, water: and energy security in South Asia: a nexus perspective from the Hindu Kush Himalayan regions. Environ Sci Policy. 2014;39:35–48.

    Article  Google Scholar 

  • Rathmann R, Szklo A, Schaeffer R. Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energ. 2010;35(1):14–22.

    Article  Google Scholar 

  • Ridoutt BG, Pfister S. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Ass. 2013;18:204–7.

    Article  Google Scholar 

  • Scott CA, Pierce SA, Pasqualetti MJ, Jones AL, Montz BE, Hoover JH. Policy and institutional dimensions of the water–energy nexus. Energ Policy. 2011;39:6622–30.

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–40.

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the U.S. Department of Energy’s aquatic species program-biodiesel from algae. Report to the Department of Energy. National Renewable Energy Laboratory, Golden, Colorado. 1998.

    Google Scholar 

  • Sulser TB, Ringler C, Zhu T, Msangi M, Bryan E, Rosegrant MW. Green and blue water accounting in the Ganges and Nile basins: implications for food and agricultural policy. J Hydrol. 2010;384:276–91.

    Article  Google Scholar 

  • Tilman D, Hill J, Lehman C. Carbon negative biofuels from low-input, high-diversity grassland biomass. Science. 2006;314:1598–600.

    Article  Google Scholar 

  • Wang, M. Updated energy and greenhouse gas emissions results of fuel ethanol. In: The 15th international symposium on alcohol fuels. San Diego, California, USA, September, 2005.

    Google Scholar 

  • Yang H, Zhou Y, Liu J. Land and water requirements of biofuel and implications for food supply and the environment in China. Energ Policy. 2009;37:1876–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arshad, M., Abbas, M. (2018). Future Biofuel Production and Water Usage. In: Arshad, M. (eds) Perspectives on Water Usage for Biofuels Production. Springer, Cham. https://doi.org/10.1007/978-3-319-66408-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66408-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66407-1

  • Online ISBN: 978-3-319-66408-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics