Skip to main content

Abstract

Fossil fuels applications are linked with current widely held environmental issues. The decline of these fuels resources with environmental penalties has compelled for substitutes and usage of renewable biofuel as energy sources; has gained a significant importance in last two decades. Production of biodiesel, biogas and bioethanol from various feedstock, several kinds of wastes, many types of biomass and agricultural residues, is ecological viable and sustainable option. The involvement of biofuel in worldwide transportation fuels seems to be revolving about 5% over the next decade. But, many studies put forward that biofuel may share up to a one fourth of transport fuel supplies by 2050. In the first part of the chapter, advantages and applications of mostly used biofuel is presented. The second part of the chapter keeps concepts about biodiesel. Biogas production and composition has been addressed in third portion. Finally, the production of bioethanol from different feedstock has been discussed. Instability of fossil fuels prices in last decade and environment concerns has increased biofuel production many folds. Such a fast growth has been resulted controversial and raised some concerns over potential water use in production of biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT. Potential of biogas production from farm animal waste in Malaysia. Renew Sust Energ Rev. 2016;60:714–23.

    Article  Google Scholar 

  • Abdmouleh Z, Alammari RA, Gastli A. Review of policies encouraging renewable energy integration & best practices. Renew Sust Energ Rev. 2015;45:249–62.

    Article  Google Scholar 

  • Aboudi K, Alvarez-Gallego CJ, Romero-Garcia LI. Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: effect of the organic loading rate (OLR) on process performance. Bioresour Technol. 2015;194:283–90.

    Article  Google Scholar 

  • Aggelis G. Microbiology and microbial technology, A. Athens, Greece: Stamoulis Publishers; 2007.

    Google Scholar 

  • Agrocadenas. Segundo informe de coyunturamaı´z 2006. Observatorio Agrocadenas Colombia, Ministry of Agricultural and Rural Development. http://www.agrocadenas.gov.co/home.htm. Accessed Feb 2007.

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev. 2011;15:584–93.

    Article  Google Scholar 

  • Alam M, Hasan M. Feasibility study of biogas energy in Bangladesh (Doctoral dissertation) Daffodil International University; 2017.

    Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chem. 2010;12:1493–513.

    Article  Google Scholar 

  • Alzate CAC, Toro OJS. Energy consumption analysis of integrated flow sheets for production of fuel ethanol from lignocellulosic biomass. Energy. 2006;31:2111–23.

    Google Scholar 

  • Amin S. Review on biofuel oil and gas production processes from microalgae. Energ convers manage. 2009;50:1834–40.

    Article  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH. Biofuels from microbes. Appl Microbiol Biotechnol. 2007;77(1):23–35.

    Article  Google Scholar 

  • Ariesyady HD, Ito T, Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a fullscale anaerobic sludge digester. Water Res. 2007;41:1554–68.

    Article  Google Scholar 

  • Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energ. 2014;123:143–56.

    Article  Google Scholar 

  • Arshad M. Bioethanol: A sustainable and environment friendly solution for Pakistan. A Scientific J. COMSATS–Sci. Vision. 2010;16–7.

    Google Scholar 

  • Arshad M, Ahmed S. Cogeneration through bagasse: a renewable strategy to meet the future energy needs. Renew Sust Energ Rev. 2016;54:732–7.

    Article  Google Scholar 

  • Arshad M, Khan ZM, Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008;47:410–4.

    Article  Google Scholar 

  • Arshad M, Zia MA, Asghar M, Bhatti H. Improving bio-ethanol yield: Using virginiamycin and sodium flouride at a Pakistani distillery. Afr J Biotechnol. 2011;10:11071.

    Article  Google Scholar 

  • Arshad M, Adil M, Sikandar A, Hussain T. Exploitation of meat industry by-products for biodiesel production: Pakistan’s perspective. Pakistan J Life Soc Sci. 2014a;12:120–5.

    Google Scholar 

  • Arshad M, Ahmed S, Zia MA, Rajoka MI. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol. 2014b;172:2455–64.

    Article  Google Scholar 

  • Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian J Microbiol. 2017. doi:10.1016/j.bjm.2017.02.003.

  • Astals S, Musenze RS, Bai X, Tannock S, Tait S, Pratt S, et al. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresour Technol. 2015;181:97–104.

    Article  Google Scholar 

  • Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev. 2012;16:2070–93.

    Article  Google Scholar 

  • Balat M. Potential alternatives to edible oils for biodiesel production-A review of current work. Energ Convers Manage. 2011a;52:1479–92.

    Article  Google Scholar 

  • Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manag. 2011b;52:858–75.

    Article  Google Scholar 

  • Balat M, Balat H. Progress in biodiesel processing. Appl Energ. 2010;87:1815–35.

    Article  Google Scholar 

  • Balat M, Balat M, Kırtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energ Convers Manage. 2009;50:3147–57.

    Article  Google Scholar 

  • Banković-Ilić IB, Stamenković OS, Veljković VB. Biodiesel production from non-edible plant oils. Renew Sust Energ Rev. 2012;16:3621–47.

    Article  Google Scholar 

  • Barney BM. Metabolic engineering: the sweet smell of biosynthesis. Nat Chem Biol. 2014;10:246–7.

    Article  Google Scholar 

  • Bart JCJ, Palmeri N, Cavallaro S. Biodiesel science and technology: from soil to oil. Woodhead Publishing Limited; 2010.

    Google Scholar 

  • Basha SA, Gopal KR, Jebaraj S. A review on biodiesel production, combustion, emissions and performance. Renew Sust Energ Rev. 2009;13:1628–34.

    Article  Google Scholar 

  • Basumatary S. Yellow Oleander (Thevetia peruviana) seed oil biodiesel as an alternative and renewable fuel for diesel engines: a review. Int J Chem Tech Res. 2015;7:2823.

    Google Scholar 

  • Battista F, Fino D, Erriquens F, Mancini G, Ruggeri B. Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations. Renew Energ. 2015;81:71–7.

    Article  Google Scholar 

  • Belle AJ, Lansing S, Mulbry W, Weil RR. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters. Bioresour Technol. 2015;178:230–7.

    Article  Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv. 2014;32:1476–93.

    Article  Google Scholar 

  • Bentley RW. Introduction. In: Introduction to peak oil. Springer International Publishing; 2016. P. 1–8.

    Google Scholar 

  • Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol. 2008;99:1716–21.

    Google Scholar 

  • Berg C. World fuel ethanol. Analysis and outlook. F.O. Licht. http://www.agra-europe.co.uk/FOLstudies/FOL-Spec04.html (2001). Accessed March 2004.

  • Bergthorson JM, Thomson MJ. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew Sust Energ Rev. 2015;42:1393–417.

    Article  Google Scholar 

  • Bhola V, Swalaha F, Kumar RR, Singh M, Bux F. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol. 2014;11:2103–18.

    Article  Google Scholar 

  • Bilgen S. Structure and environmental impact of global energy consumption. Renew Sust Energ Rev. 2014;38:890–902.

    Article  Google Scholar 

  • Borras SM, McMichael P, Scoones I. 2010 The politics of biofuels, land and agrarian change: a special issue on biofuels. J. Peasant Stud. 2010;37:575–92.

    Article  Google Scholar 

  • Borse P, Sheth A. Technological and commercial update for first and second generation ethanol production in India. In: Sustainable biofuels development in India. Springer International Publishing; 2017. PP. 279–97.

    Google Scholar 

  • Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77.

    Article  Google Scholar 

  • Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ Fuels. 2010;24:3639–46.

    Article  Google Scholar 

  • Burch R, Southward BWL. A novel application of trapping catalysts for the selective low-temperature oxidation of NH3 to N2 in simulated biogas. J Catal. 2000;195:217–26.

    Article  Google Scholar 

  • Calero J, Luna D, Sancho ED, Luna C, et al. An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renew Sust Energ Rev. 2015;42:1437–52.

    Article  Google Scholar 

  • Canakci M, Ozsezen AN, Arcaklioglu E, Erdil A. Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Syst Appl. 2009;36:9268–80.

    Article  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR. Second generation biofuels: economics and policies. Energ Policy. 2011;39:4222–34.

    Article  Google Scholar 

  • Castañeda-Ayarza JA, Cortez LAB. Final and B molasses for fuel ethanol production and some market implications. Renew Sust Energ Rev. 2016.

    Google Scholar 

  • Chapagain BP, Yehoshua Y, Wiesman Z. Desert date (Balanites aegyptiaca) as an arid lands sustainable bioresour for biodiesel. Bioresour Technol. 2009;100:1221–6.

    Article  Google Scholar 

  • Chavez-Baeza C, Sheinbaum-Pardo C. Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area. Energy. 2014;66:624–34.

    Article  Google Scholar 

  • Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR. Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci. 2008;9:169–80.

    Article  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.

    Article  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101:5330–6.

    Article  Google Scholar 

  • Choudhary J, Singh S, Nain L. Bioprospecting thermo tolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng. 2017;123:342–6.

    Article  Google Scholar 

  • Claassen PAM, van Lier JB, Lo´pez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, et al. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol. 1999;52:741–55.

    Google Scholar 

  • Costa AC, Atala DIP, Maugeri F, Maciel R. Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochem. 2001;37:125–37.

    Article  Google Scholar 

  • Cremonez PA, Feroldi M, Nadaleti WC, deRossi E, Feiden A, DeCamargo MP, et al. Biodiesel production in Brazil: current scenario and perspectives. Renew Sust Energ Rev. 2015;42:415–28.

    Article  Google Scholar 

  • Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J. Bioenergy and climate change mitigation: an assessment. Gcb Bioenerg. 2015;7:916–44.

    Article  Google Scholar 

  • Dai W, Word DP, Hahn J. Modeling, dynamic optimization of fuel-grade ethanol fermentation using fed-batch process. Control Eng Practice. 2014;22:231–41.

    Article  Google Scholar 

  • Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, et al. Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol. 2014;48:7200–3.

    Article  Google Scholar 

  • Danielsen F, Beukema H, Burgess ND, Parish F, Bruhl CA, Donald PF, et al. Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol. 2009;23:348–58.

    Article  Google Scholar 

  • De Francisci D, Kougias P, Treu L, Campanaro S, Irini A. Microbial diversity and dynamicity of biogas reactors fed with different substrates. In 2nd international conference on biogas microbiology; 2014.

    Google Scholar 

  • De Kam MJ, Morey RV, Tiffany DG. Biomass integrated gasification combined cycle for heat and power at ethanol plants. Energ Convers Manage. 2009;50:1682–90.

    Article  Google Scholar 

  • deAlegría IM, Basañez A, deBasurto PD, Fernández-Sainz A. Spain׳ s fulfillment of its Kyoto commitments and its fundamental greenhouse gas (GHG) emission reduction drivers. Renew Sust Energ Rev. 2016;59:858–67.

    Google Scholar 

  • Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energ Convers Manage. 2011;52:163–70.

    Article  Google Scholar 

  • Demirbas A. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel. 2008;87:1743–8.

    Article  Google Scholar 

  • Demirbas A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energ Convers Manage. 2009a;50:923–7.

    Article  Google Scholar 

  • Demirbas A. Diesel-like fuel from tallow by pyrolysis and supercritical water liquefaction. Energ Source A. 2009b;31:824–30.

    Article  Google Scholar 

  • Demirbas A. Progress and recent trends in biodiesel fuels. Energ Convers Manage. 2009c;50:14–34.

    Article  Google Scholar 

  • Demirbas A. Biofuels securing the planet’s future energy needs. Energ Convers Manage. 2009d;50:2239–49.

    Article  Google Scholar 

  • Deng X, Fang Z, Liu YH, Yu CL. Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy. 2011;36:777–84.

    Article  Google Scholar 

  • Dewil R, Appels L, Baeyens J. Energy use of biogas hampered by the presence of siloxanes. Energ Convers Manage. 2006;47:1711–22.

    Article  Google Scholar 

  • Dias JM, Alvim-Ferraz MC Almeida MF. Mixtures of vegetable oils and animal fat for biodiesel production: influence on product composition and quality. Energ Fuels. 2008;22:3889–93.

    Google Scholar 

  • Diouf J. Biofuels a disaster for world food. See http://eucoherence.org/renderer.do/,2007.ClearState/false/menuld/22735/return.

  • Divya D, Gopinath LR, Christy PM. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energ Rev. 2015;42:690–9.

    Article  Google Scholar 

  • Duffield JA, Johansson R, Meyer S. US ethanol an examination of policy, production, use, distribution, and market interactions; 2015.

    Google Scholar 

  • Dutta K, Daverey A, Jih-Gaw LJG. Evolution retrospective for alternative fuels: first to fourth generation. Renew Energ. 2014;69:114–22.

    Article  Google Scholar 

  • Dwivedi P, Wang W, Hudiburg T, Jaiswal D, Parton W, Long S, et al. Cost of abating greenhouse gas emissions with cellulosic ethanol. Environ Sci Technol. 2015;49:2512–22.

    Article  Google Scholar 

  • Echegaray O, Carvalho J, Fernandes A, Sato S, Aquarone E, Vitolo M. Fed-batch culture of Saccharomyces cerevisiae in sugarcane blackstrap molasses: invertase activity of intact cells in ethanol fermentation. Biomass Bioenerg. 2000;19:39–50.

    Article  Google Scholar 

  • Einspanier R, Lutz B, Rief S, Berezina O, Zverlov V, Schwarz WH, Mayer J. Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. Eur Food Res Technol. 2004;218:269–73.

    Article  Google Scholar 

  • Elbehri A, Segerstedt A, Liu P. Biofuels and the sustainability challenge: a global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agriculture Organization of the United Nations (FAO); 2013.

    Google Scholar 

  • El-Mashad HM, Zhang R. Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol. 2010;101:4021–8.

    Article  Google Scholar 

  • Emanuel E, Gomes C. An assessment of mechanisms to improve energy efficiency in the transport sector in Grenada, Saint Lucia and Saint Vincent and the Grenadines 2014.

    Google Scholar 

  • Ertas M, Alma MH. Slow pyrolysis of chinaberry (Meliaazedarach L.) seeds: Part I. The influence of pyrolysis parameters on the product yields. Ener Edu Sci Technol Part A-Energ Sci Res. 2011;26:143–54.

    Google Scholar 

  • Eryilmaz T, Yesilyurt MK, Cesur C, Gokdogan O. Biodiesel production potential from oil seeds in Turkey. Renew Sust Energ Rev. 2016;58:842–51.

    Article  Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, et al. Biofuels: environment, technology and food security. Renew Sust Energ Rev. 2009;13:1275–87.

    Article  Google Scholar 

  • Esteves IA, Lopes MS, Nunes PM, Mota JP. Adsorption of natural gas and biogas components on activated carbon. Sep Purif Technol. 2008;62:281–96.

    Article  Google Scholar 

  • Falasca SL, Flores N, Lamas MC, Carballo SM, Anschau A. Crambea byssinica: an almost unknown crop with a promissory future to produce biodiesel in Argentina. Int J Hydrogen Energ. 2010;35:5808–12.

    Article  Google Scholar 

  • Fathya S, Assia K, Hamza M. Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: process stability and biogas production. Energ Procedia. 2014;50:57–63.

    Article  Google Scholar 

  • Fernandes DM, Serqueira DS, Portela FM, Assunção RMN, Munoz RAA, Terrones MGH. Preparation and characterization of methylic and ethylic biodiesel from cottonseed oil and effect of tert-butylhydroquinone on its oxidative stability. Fuel. 2012;97:658–61.

    Article  Google Scholar 

  • Festel GW. Biofuels-economic aspects. Chem Eng Technol. 2008;31:715–20.

    Article  Google Scholar 

  • Fogel C. Constructing progressive climate change norms: the US in the early 2000s. The social construction of climate change, power, knowledge, norms, discourses. 2007;123–47.

    Google Scholar 

  • Foong TM, Morganti KJ, Brear MJ, daSilva G, Yang Y, Dryer FL. The octane numbers of ethanol blended with gasoline and its surrogates. Fuel. 2014;115:727–39.

    Article  Google Scholar 

  • Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci. 2014;7:709–15.

    Article  Google Scholar 

  • Gassen HG. Biogasanlagen: Ein Beitrag zur umweltfreundlichen Energieversorgung. Biol unserer Zeit. 2005;35(6):384–92.

    Article  Google Scholar 

  • Géczi G, Borges CA, Ágoston C, Pusztai K, Ákos U Beszédes S. Examination of energy recovery of brewers’spent grain ii.-biological process. J Microbiol Biotechnol Food Sci. 2015;5:268.

    Google Scholar 

  • Ghazali WNMW, Mamat R, Masjuki HH, Najafi G. Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew Sust Energ Rev. 2015;51:585–602.

    Article  Google Scholar 

  • Gonzalez-Salazar MA, Venturini M, Poganietz WR, Finkenrath M, Kirsten T, Acevedo H, et al. Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation and CHP. Appl Energ. 2016;180:338–52.

    Article  Google Scholar 

  • Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Indus Microbiol Biotechnol. 2009;36:269–74.

    Article  Google Scholar 

  • Graham-Rowe D. Beyond food versus fuel. Nature. 2011;474:S6–8.

    Article  Google Scholar 

  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10:141–6.

    Article  Google Scholar 

  • Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy. 2008;33:1646–53.

    Article  Google Scholar 

  • Hahn-Hägerdahl B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose fermenting yeast strains. Appl Microbiol Biotechnol. 2007;74:937–53.

    Article  Google Scholar 

  • Haider MR, Zeshan YS, Malik RN, Visvanathan C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculums ratio on biogas production. Bioresour Technol. 2015;190:451–7.

    Article  Google Scholar 

  • Haile H. Integrated volarization of spent coffee grounds to biofuels. Biofuel Res J. 2014;1:65–9.

    Article  Google Scholar 

  • Harmsen PFH, Huijgen W, Bermudez L, Bakker R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass (No. 1184). Wageningen UR Food and Biobased Research; 2010.

    Google Scholar 

  • Haro P, Ollero P, Trippe F. Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Process Technol. 2013;114:35–48.

    Article  Google Scholar 

  • Havukainen J, Uusitalo V, Niskanen A, Kapustina V, Horttanainen M. Evaluation of methods for estimating energy performance of biogas production. Renew Energ. 2014;66:232–40.

    Article  Google Scholar 

  • Headey D, Fan S. Anatomy of a crisis, the causes and consequences of surging food prices. Agric Econ. 2008;39:375–91.

    Article  Google Scholar 

  • Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–9.

    Article  Google Scholar 

  • Hoekman SK, Robbins C. Review of the effects of biodiesel on NOx emissions. Fuel Process Technol. 2012;96:237–49.

    Article  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, et al. Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev. 2012;16:143–69.

    Article  Google Scholar 

  • Hojo O, Hokka CO, SoutoMaior AM. Ethanol production by a flocculant yeast strain in a CSTR type fermentor with cell recycling. Appl Biochem Biotechnol. 1999;77–79:535–45.

    Article  Google Scholar 

  • Holmberg K, Erdemir A. Global impact of friction on energy consumption, economy and environment. FME Trans. 2015;43:181–5.

    Google Scholar 

  • Höök M, Davidsson S, Johansson S, Tang X. Decline and depletion rates of oil production: a comprehensive investigation. Phil Trans R Soc A. 2014;372.20120448.

    Google Scholar 

  • Hossain ABM, AlEissa MS. Biodiesel fuel production from palm, sunflower waste cooking oil and fish byproduct waste as renewable energy and environmental recycling process. 2016;10:1–9.

    Google Scholar 

  • Hughes SR, Moser BR, Gibbons WR. Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production. In: Convergence of food security, energy security and sustainable agriculture. Springer, Berlin Heidelberg; 2014:15–29.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) 2014. Climate change 2014–impacts, adaptation and vulnerability: regional aspects. Cambridge University Press.

    Google Scholar 

  • Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel. Renew Sust Energ Rev. 2010;14:1312–20.

    Article  Google Scholar 

  • Janczak D, Kozlowski K, Zbytek Z, Cieslik M, Bugala A, Czekala W. Energetic efficiency of the vegetable waste used as substrate for biogas production. In MATEC Web of Conferences 2016;64. EDP Sciences.

    Google Scholar 

  • Jatrofuels. From feedstock cultivation to full market integration. 2012 http://www.jatrofuels.com/161-0-Biofuels.html#Fuel%20characteristics%20and%20advantages.

  • Johari A, Nyakuma BB, Nor SHM, Mat R, Hashim H, Amad A, et al. The challenges and prospects of palm oil based biodiesel in Malaysia. Energy. 2015;81:255–61.

    Article  Google Scholar 

  • Jonker JGG, Van Der Hilst F, Junginger HM, Cavalett O, Chagas MF, Faaij APC. Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Appl Energ. 2015;147:593–610.

    Article  Google Scholar 

  • Kafle GK, Kim SH. Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energ. 2013;103:61–72.

    Article  Google Scholar 

  • Kafuku G, Mbarawa M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel. 2010;89:2556–60.

    Article  Google Scholar 

  • Kalam MA, Masjuki HH. Biodiesel from palmoil-an analysis of its properties and potential. Biomass Bioenerg. 2002;23:471–9.

    Article  Google Scholar 

  • Kapdi SS, Vijay VK, Rajesh SK, Prasad R. Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energ. 2005;30:1195–202.

    Article  Google Scholar 

  • Karim Z, Afrin S, Husain Q, Danish R. Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Critic Rev Biotechnol. 2017;37:355–70.

    Article  Google Scholar 

  • Karmee SA, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol. 2005;96:1425–9.

    Article  Google Scholar 

  • Karwat DM, Eagle WE, Wooldridge MS. Are there ecological problems that technology cannot solve? Water scarcity and dams, climate change and biofuels. IJESJP. 2014;3:7–25.

    Article  Google Scholar 

  • Kern JD, Hise AM, Characklis GW, Gerlach R, Viamajala S, Gardner RD. Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities. Bioresour Technol. 2017;225:418–28.

    Article  Google Scholar 

  • Khan SR. Viewing biofuel (ethanol) prospects in Pakistan through a sustainable development prism. SDPI Res News Bulletin. 2007;14.

    Google Scholar 

  • Khoufi S, Louhichi A, Sayadi S. Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Bioresour Technol. 2015;182:67–74.

    Article  Google Scholar 

  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 2004;26:361–75.

    Article  Google Scholar 

  • Kim S, Dale B. Ethanol fuels: E10 or E85–life cycle perspectives. Int J Life Cycle Assess. 2006;11:117–21.

    Article  Google Scholar 

  • Knothe G, Krahl J, Van Gerpen J. eds. The biodiesel handbook. Elsevier. 2015.

    Google Scholar 

  • Koberg M, Cohen M, Ben-Amotz A, Gedanken A. Bio-diesel production directly from the microalgae biomass of Nanno chloropsis by microwave and ultrasound radiation. Bioresour Technol. 2011;102:4265–9.

    Article  Google Scholar 

  • Koh MY, Ghazi MTI. A review of biodiesel production from Jatrophacurcas L. oil. Renew Sust Energ Rev. 2011;15:2240–51.

    Google Scholar 

  • Kolbitsch P, Pfeifer C, Hofbauer H. Catalytic steam reforming of model biogas. Fuel. 2008;87:701–6.

    Article  Google Scholar 

  • Kopsahelis N, Bosnea L, Bekatorou A, Tzia C, Kanellaki M. Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer’s spent grains in two types of continuous bioreactor systems. Biomass Bioenerg. 2012;45:87–94.

    Article  Google Scholar 

  • Kovarik B. Henry Ford, Charles Kettering, and the “fuel of the future”. Automot Hist Rev. 1998;32:7–27.

    Google Scholar 

  • Kristensen EF, Feng L, Møller HB. Storage and pretreatment of grass for from extensive lowland areas used in a biogas plant. In: International conference on agricultural engineering 2016.

    Google Scholar 

  • Kumar A, Sharma S. Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sust Energ Rev. 2011;15:1791–800.

    Article  Google Scholar 

  • Kumar S, Shrestha P, Salam PA. A review of biofuel policies in the major biofuel producing countries of ASEAN: production, targets, policy drivers and impacts. Renew Sust Energ Rev. 2013;26:822–36.

    Article  Google Scholar 

  • Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol. 2004;91:289–95.

    Article  Google Scholar 

  • Lee S, Speight JG, Loyalka SK. Handbook of alternative fuel technologies. CRC Press; 2014.

    Google Scholar 

  • Leone TG, Olin ED, Anderson JE, Jung HH, Shelby MH, Stein RA. Effects of fuel octane rating and ethanol content on knock, fuel economy, and CO2 for a turbocharged DI engine. SAE Int J Fuels Lubricants. 2014;7:9–28.

    Article  Google Scholar 

  • Leu JH. Biodiesel manufactured from waste cooking oil by alkali transerification reaction and its vehicle application. J Biobas Material Bioenerg. 2013;7:189–93.

    Article  Google Scholar 

  • Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energ. 2010;87:1083–95.

    Article  Google Scholar 

  • Li D, Liu SC, Mi L, Li ZD, Yuan Y, Yan Z, et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol. 2015a;189:319–26.

    Article  Google Scholar 

  • Li D, Liu SC, Mi L, Li ZD, Yuan Y, Yan Z, et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresour Technol. 2015b;187:120–7.

    Article  Google Scholar 

  • Li LH, Sun YM, Yuan ZH, Kong XY, Wao Y, Yang L, et al. Effect of microalgae supplementation on the silage quality and anaerobic digestion performance of many flower silver grass. Bioresour Technol. 2015c;189:334–40.

    Article  Google Scholar 

  • Liu X, Piao X, Wang Y, Zhu S. Liquid–liquid equilibrium for systems of (fatty acid ethyl esters + ethanol + soybean oil and fatty acid ethyl esters + ethanol + glycerol). J Chem Eng Data. 2008;53:359–62.

    Article  Google Scholar 

  • Losordo Z, McBride J, Rooyen JV, Wenger K, Willies D, Froehlich A, et al. Cost competitive second-generation ethanol production from hemicellulose in a Brazilian sugarcane biorefinery. Biofuels, Bioprod Biorefin. 2016;10:589–602.

    Article  Google Scholar 

  • Luca C, Pilu R, Tambone F, Scaglia B, Adani FL. New energy crop giant cane (Arundodonax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. Bioresour Technol. 2015;191:197–204.

    Article  Google Scholar 

  • Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science. 2014;343:277–80.

    Article  Google Scholar 

  • Lynd LR, Woods J. A new hope for Africa. Nature. 2011;474:S20–1.

    Article  Google Scholar 

  • Ma F, Hanna MA. Biodiesel production: a review. Bioresour Technol. 1999;70:1–15.

    Article  Google Scholar 

  • Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol. 2007;98:2351–68.

    Article  Google Scholar 

  • Maier A, Volker B, Boles E, Fuhrmann GF. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (counter transport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002;2:539–50.

    Google Scholar 

  • Majchrowicz E. ed. Biochemical pharmacology of ethanol. Springer Science & Business Media; 2013. P. 56.

    Google Scholar 

  • Malakhova DV, Egorova MA, Prokudina LI, Netrusov AI, Tsavkelova EA. The biotransformation of brewer’s spent grain into biogas by anaerobic microbial communities. World J Microbiol Biotechnol. 2015;31.

    Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev. 2015;2015(45):540–55.

    Article  Google Scholar 

  • Marchetti J, Miguel V, Errazu A. Possible methods for biodiesel production. Renew Sust Energ Rev. 2007;11:1300–11.

    Article  Google Scholar 

  • Maroun MR, La Rovere EL. Ethanol and food production by family small holdings in rural Brazil: economic and socio-environmental analysis of micro distilleries in the state of Rio Grande doSul. Biomass Bioenerg. 2014;63:140–55.

    Article  Google Scholar 

  • Martínez EJ, Gil MV, Fernandez C, Rosas JG, Gómez X. Anaerobic codigestion of sludge: addition of butcher’s fat waste as a cosubstrate for increasing biogas production. PLoS ONE. 2016;11:e0153139.

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14:217–32.

    Article  Google Scholar 

  • Mayer FD, Feris LA, Marcilio NR, Hoffmann R. Why small-scale fuel ethanol production in Brazil does not take off? Renew Sust Energ Rev. 2015;43:687–701.

    Article  Google Scholar 

  • McMillan JD. Bioethanol production: status and prospects. Renew Energ. 1997;10:295–302.

    Article  Google Scholar 

  • Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification-a review. Renew Sust Energ Rev. 2006;10:248–68.

    Article  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renew Energ. 2009;34:1–5.

    Article  Google Scholar 

  • Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol. 2005;66:486–96.

    Article  Google Scholar 

  • Mielenz J.R. Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. Bioenerg Biomass Biofuel. 2014;385.

    Google Scholar 

  • Moeller L, Görsch K. Foam formation in full-scale biogas plants processing biogenic waste. Energ Sust Soc. 2015;5:1.

    Article  Google Scholar 

  • Mofijur M, Atabani AE, Masjuki HH, Kalam MA, Masum BM. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: a comparative evaluation. Renew Sust Energ Rev. 2013;23:391–404.

    Article  Google Scholar 

  • Montanes R, Solera R, Perez M. Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature. Bioresour Technol. 2015;181:177–84.

    Article  Google Scholar 

  • Moreira JS. Sugarcane for energy-recent results and progress in Brazil. Energ Sust Develop. 2000;4:43–54.

    Article  Google Scholar 

  • Moreira J, Goldemberg J. The alcohol program. Energ Policy. 1999;27:229–45.

    Article  Google Scholar 

  • Murphy F, Devlin G, Deverell R, McDonnell K. Biofuel production in Ireland-an approach to 2020 targets with a focus on algal biomass. Energies. 2013;6:6391–412.

    Article  Google Scholar 

  • Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, et al. Production and analysis of bio-diesel from non-edible oils-a review. Renew Sust Energ Rev. 2009;13:825–34.

    Article  Google Scholar 

  • Mutreja V, Singh S, Ali A. Biodiesel from mutton fat using KOH impregnated MgO as heterogeneous catalysts. Renew Energ. 2011;36:2253–8.

    Article  Google Scholar 

  • Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Progress Energ Combust Sci. 2011;37:52–68.

    Article  Google Scholar 

  • Ohuchi Y, Ying C, Lateef SA, Ihara I, Iwasaki M, Inoue R, et al. Anaerobic co-digestion of sugar beet tops silage and dairy cow manure under thermophilic condition. J Mat Cycles Waste Manage. 2015;17:540–6.

    Article  Google Scholar 

  • Önal H, Núñez HM. An economic analysis of transportation fuel policies in Brazil 2014.

    Google Scholar 

  • Öner C, Altun Ş. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Appl Energ. 2009;86:2114–20.

    Article  Google Scholar 

  • Ong HC, Mahlia TMI, Masjuki HH, Norhasyima RS. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energ Rev. 2011;15:3501–15.

    Article  Google Scholar 

  • Onuki S, Koziel JA, Jenks WS, Cai L, Rice S, Leeuwen JH. Optimization of extraction parameters for quantification of fermentation volatile by-products in industrial ethanol with solid-phase microextraction and gas chromatography. J Institute Brewing. 2016;122:102–9.

    Article  Google Scholar 

  • Orsi F, Muratori M, Rocco M, Colombo E, Rizzoni G. A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: primary energy consumption, CO2 emissions, and economic cost. Appl Energ. 2016;169:197–209.

    Article  Google Scholar 

  • Pfenninger S, Keirstead J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Appl Energ. 2015;152:83–93.

    Article  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, et al. Food versus biofuels: environmental and economic costs. Human Ecol. 2009;37:1–12.

    Article  Google Scholar 

  • Poitrat E. The potential of liquid biofuels in France. Renew Energ. 1999;16:1084–9.

    Article  Google Scholar 

  • Popovich CA, Damiani C, Constenla D, Martínez AM, Freije H, Giovanardi M, et al. Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: evaluation of its growth and biochemical composition. Bioresour Technol. 2012;114:287–93.

    Article  Google Scholar 

  • Popovicheva O, Engling G, Lin KT, Persiantseva N, Timofeev M, Kireeva E, et al. Diesel/biofuel exhaust particles from modern internal combustion engines: microstructure, composition, and hygroscopicity. Fuel. 2015;157:232–9.

    Article  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákos M, Fári M. The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev. 2014;32:559–78.

    Article  Google Scholar 

  • Pöschl M, Ward S, Owende P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energ. 2010;87:3305–21.

    Article  Google Scholar 

  • Prasad S, Singh A, Joshi H. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl. 2007;50:1–39.

    Article  Google Scholar 

  • Ragit SS, Mohapatra SK, Kundu K, Gill P. Optimization of neem methyl ester from transesterification process and fuel characterization as a diesel substitute. Biomass Bioenergy. 2011;35:1138–44.

    Article  Google Scholar 

  • Rahman MM, Hasan MM, Paatero JV, Lahdelma R. Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renew Energ. 2014;68:35–45.

    Article  Google Scholar 

  • Rakopoulos DC, Giakoumis EG, Papagiannakis RG, Kyritsis DC. Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: vegetable oil, bio-diesel, ethanol, n-butanol, diethyl ether. Energy. 2014;73:354–66.

    Article  Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C. Use of vegetable oils as I.C. engine fuels-A review. Renew Energ. 2004;29:727–42.

    Article  Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharam C. Biodiesel production from high FFA rubber seed oil. Fuel. 2005;84:335–40.

    Article  Google Scholar 

  • Rao PV, Baral SS, Dey R, Mutnuri S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sust Energ Rev. 2010;14:20–2094.

    Google Scholar 

  • Rashedul HK, Masjuki HH, Kalam MA, Teoh YH, How HG, Fattah IR. Effect of antioxidant on the oxidation stability and combustion-performance-emission characteristics of a diesel engine fueled with diesel–biodiesel blend. Energ Convers Manage. 2015;106:849–58.

    Article  Google Scholar 

  • Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants. Energy. 2007;32:1375–80.

    Article  Google Scholar 

  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:8–815.

    Article  Google Scholar 

  • Ratledge C. Yeast physiology-a micro-synopsis. Bioproc Eng. 1991;6:195–203.

    Article  Google Scholar 

  • Ray AE, Li C, Thompson VS, Daubaras DL, Nagle NJ, Hartley DS. Biomass blending and densification: impacts on feedstock supply and biochemical conversion performance. Biomass Volume Estimat Valoriz Energ. InTech; 2017. doi:10.5772/67207.

  • Razaviarani V, Buchanan ID. Anaerobic co-digestion of biodiesel waste glycerin with municipal wastewater sludge: microbial community structure dynamics and reactor performance. Bioresour Technol. 2015;182:8–17.

    Article  Google Scholar 

  • Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catalysis. 2015;5:2814–21.

    Article  Google Scholar 

  • Renaud SM, Parry DL, Thinh LV, Kuo C, Padovan A, Sammy N. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycolo. 1991;3:43–53.

    Google Scholar 

  • Reuter M, Buchwitz M, Hilboll A, Richter A, Schneising O, Hilker M, et al. Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations. Nature Geosci. 2014;7:792–5.

    Article  Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Donéche B, Lonvaud A, Schneising O, Hilker M, et al. Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In: Handbook of enology: the microbiology of wine and vinifications. New York: Wiley; 2006. PP. 53–77.

    Google Scholar 

  • Riggio V, Comino E, Rosso M. Energy production from anaerobic codigestion processing of cow slurry, olive pomace and apple pulp. Renew Energ. 2015;83:280–93.

    Article  Google Scholar 

  • Rodriguez C, Alaswad A, Benyounis KY, Olabi AG. Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev. 2017;68:1193–204.

    Article  Google Scholar 

  • Rothman H, Greenshields R, Rosillo CF. Energy from alcohol: the Brazilian experience. University Press of Kentucky; 2015.

    Google Scholar 

  • Roukas T. Ethanol production from carob pod extract by immobilized Saccharomyces cerevisiae cells on the mineral kissiris. Food Biotechnol. 1995;9:175–88.

    Article  Google Scholar 

  • Sagagi B, Garba B, Usman N. Studies on biogas production from fruits and vegetable waste. Bayero J Pure Appl Sci. 2009;2:115–8.

    Google Scholar 

  • Saka S. Production of biodiesel: current and future technology. In: JSPS/VCO Core University Program Seminar, Universiti Sains Malaysia, September 2005.

    Google Scholar 

  • Saravanan S, Nagarajan G, Rao GLN. Investigation on nonedible vegetable oil as a compression ignition engine fuel in sustaining the energy and environment. J Renew Sust Energ. 2010;2:1–8.

    Article  Google Scholar 

  • Sarin R, Sharma M, Khan AA. Studies on Guizotiaabyssinica L. oil: Biodiesel synthesis and process optimization. Bioresour Technol. 2009;100:4187–92.

    Article  Google Scholar 

  • Sarma A, Konwer D, Bordoloi PK. A comprehensive analysis of fuel properties of biodiesel from koroch seed oil. Energ Fuels. 2005;19:656–7.

    Article  Google Scholar 

  • Sarris D, Giannakis M, Philippoussis A, Komaitis M, Koutinas AA, Papanikolaou S. Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses. J Chem Technol Biotechnol. 2013;88:958–69.

    Article  Google Scholar 

  • Sarris D, Matsakas L, Aggelis G, Koutinas AA, Papanikolaou S. Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Ind Crops Prod. 2014;56:83–93.

    Article  Google Scholar 

  • Sarris D, Papanikolaou S, Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng Life Sci. 2016.

    Google Scholar 

  • Satyanarayana M, Muraleedharan C. Biodiesel production from vegetable oils: a comparative optimization study. J Biobas Material Bioenerg. 2009;3:335–41.

    Article  Google Scholar 

  • Satyanarayana M, Muraleedharan C. A comparative study of vegetable oil methyl esters (biodiesels). Energy. 2011;36:2129–37.

    Article  Google Scholar 

  • Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D. Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energ Convers Manage. 2014;77:22–30.

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–40.

    Article  Google Scholar 

  • Shahid EM, Jamal J. Production of biodiesel: a technical review. Renew Sust Energ Rev. 2011;15:4732–45.

    Article  Google Scholar 

  • Shapouri H, Duffield JA, Wang M. The energy balance of corn ethanol revisited. Trans ASAE. 2003;46:959–68.

    Article  Google Scholar 

  • Sharma YC, Singh B. Development of biodiesel: current scenario. Renew Sust Energ Rev. 2009;13:1646–51.

    Article  Google Scholar 

  • Shirazi MJA, Bazgir S, Shirazi MMA. Edible oil mill effluent; a low-cost source for economizing biodiesel production: electrospun nanofibrous coalescing filtration approach. Biofuel Res J. 2014;1:39–42.

    Article  Google Scholar 

  • Shukla SK, Thanikal JV, Haouech L, Patil, SG, Kumar V. Critical evaluation of algal biofuel production processes using waste water in algal biofuels. Springer International Publishing. 2017;189–225.

    Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101:1570–80.

    Article  Google Scholar 

  • Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sust Energ Rev. 2010;14:200–16.

    Article  Google Scholar 

  • Smith K. Biofuels, air pollution, and health: a global review. Springer Science & Business Media. 2013.

    Google Scholar 

  • Soroushian F, Shang Y, Whitman EJ, Garza G, Zhang Z. Development and application of biological H2S scrubbers for treatment of digester gas. P Water Enviro Fed. 2006;9:3541–7.

    Article  Google Scholar 

  • Sridevi VD, Rema T, Srinivasan SV. Studies on biogas production from vegetable market wastes in a two-phase anaerobic reactor. Clean Technol Environ Policy. 2015;17:1689–97.

    Article  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology, Elsevier. 2013.

    Google Scholar 

  • Tabatabaei M, Karimi K, Horváth IS, Kumar R. Recent trends in biodiesel production. Biofuel Res J. 2015;7:258–67.

    Article  Google Scholar 

  • Tan HW, Aziz AA, Aroua MK. Glycerol production and its applications as a raw material: a review. Renew Sust Energ Rev. 2013;27:118–27.

    Article  Google Scholar 

  • Teo SH, Islam A, Yusaf T, Taufiq-Yap YH. Transesterification of Nanno chloropsis oculata microalga’s oil to biodiesel using calcium methoxide catalyst. Energy. 2014;78:63–71.

    Article  Google Scholar 

  • Thiyagarajan S, Edwin Geo V, Martin LJ, Nagalingam B. Carbon dioxide (CO2) capture and sequestration using biofuels and an exhaust catalytic carbon capture system in a single-cylinder CI engine: an experimental study. Biofuels. 2017;1–10.

    Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, et al. Beneficial biofuels-the food, energy, and environment trilemma. Science. 2009;325:270–1.

    Article  Google Scholar 

  • Timilsina GR. Biofuels in the long run global energy supply mix for transportation. Philos Trans Royal Soc London A Math Phys Eng Sci. 2014;372:20120323.

    Article  Google Scholar 

  • Tsoutsos TD, Tournaki S, Paraíba O, Kaminaris SD. The used cooking oil-to-biodiesel chain in Europe assessment of best practices and environmental performance. Renew Sust Energ Rev. 2016;54:74–83.

    Article  Google Scholar 

  • Uddin M, Rashid MM, Nithe NA, Rony JI. Performance and cost analysis of diesel engine with different mixing ratio of raw vegetable oil and diesel fuel. 2016.

    Google Scholar 

  • Van Uytvanck PP, Hallmark B, Haire G, Marshall PJ. Impact of biomass on industry: using ethylene derived from bioethanol within the polyester value chain. ACS Sust Chem Eng. 2014;2:1098–105.

    Article  Google Scholar 

  • van Eijck J, Romijn H, Smeets E, Bailis R, Rooijakkers M, Hooijkaas N, et al. Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania. Biomass Bioenerg. 2014a;61:25–45.

    Google Scholar 

  • van Eijck, J, Batidzirai B, Faaij A. Current and future economic performance of first and second generation biofuels in developing countries. Appl Energ. 2014b;135:115–41.

    Google Scholar 

  • Vázquez Ojeda M, Segovia Hernández JG, Hernández S, Hernández Agurri, Kiss AA. Design and optimization of an ethanol dehydration process using stochastic methods. Sep Purific Technol. 2013;105:90–7.

    Google Scholar 

  • Walker G, Simcock N, Day R. Necessary energy uses and a minimum standard of living in the United Kingdom: energy justice or escalating expectations? Energ Res Soc Sci. 2016;18:129–38.

    Article  Google Scholar 

  • Ware A, Power N. Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland. Renew Energ. 2016;97:541–9.

    Article  Google Scholar 

  • Wellinger A, Murphy JD, Baxter D. The biogas handbook: science, production and applications. Elsevier; 2013.

    Google Scholar 

  • Wesseler J, Drabik D. Prices matter: analysis of food and energy competition relative to land resources in the European Union. NJAS-Wageningen J Life Sci. 2016;77:19–24.

    Article  Google Scholar 

  • Westbrook CK, Naik CV, Herbinet O, Pitz WJ, Mehl M, Sarathy SM, et al. Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust Flame. 2011;158:742–55.

    Article  Google Scholar 

  • Weusthuis RA, Pronk JT, van den Broek P, van Dijken J. Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol Rev. 1994;58:616–30.

    Google Scholar 

  • Wolters N, Schabronath C, Schembecker G, Merz J. Efficient conversion of pretreated brewer’s spent grain and wheat bran by submerged cultivation of Hericium erinaceus. Bioresour Technol. 2016;222:123–9.

    Article  Google Scholar 

  • Wyatt VT, Hess MA, Dunn RO, Foglia TA, Haas MJ, Marmer WN. Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. J Am Oil Chem Soc. 2005;82:58–91.

    Article  Google Scholar 

  • Yanai T, Dev S, Han X, Zheng M, Tjong J. Impact of fuelling techniques on neat n-butanol combustion and emissions in a compression ignition engine. SAE Intl J Engines. 2015;8:735–46.

    Article  Google Scholar 

  • Yusuf NNAN, Kamarudin SK, Yaakub Z. Overview on the current trends in biodiesel production. Energ Convers Manage. 2011;52:2741–51.

    Article  Google Scholar 

  • Zabeti M, Daud WMAW, Aroua MK. Activity of solid catalysts for biodiesel production: A review. Fuel Process Technol. 2009;90:770–7.

    Article  Google Scholar 

  • Zaborsky OR. Chemicals from renewable resources: an endorsement for biotechnology. Enzyme Microbiol Technol. 1982;4:364–5.

    Article  Google Scholar 

  • Zamora F. Biochemistry of alcoholic fermentation, wine chemistry and biochemistry. New York: Springer; 2009. PP. 3–26.

    Google Scholar 

  • Zarkadas IS, Sofikiti AS, Voudrias EA, Pilidis GA. Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: focussing on mixing ratios. Renew Energ. 2015;80:432–40.

    Article  Google Scholar 

  • Zhang H, Zhou Q, Chang F, Pan H, Liu XF, Li H, et al. Production and fuel properties of biodiesel from Firmiana platanifolia L.f. as a potential non-food oil source. Indus Crop Prod. 2015;76:768–71.

    Article  Google Scholar 

  • Zhu J, Zheng Y, Xu F, Li Y. Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production. Bioresour Technol. 2014;154:240–7.

    Article  Google Scholar 

  • Zieminski K, Kowalska-Wentel M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour Technol. 2015;180:274–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arshad, M., Zia, M.A., Shah, F.A., Ahmad, M. (2018). An Overview of Biofuel. In: Arshad, M. (eds) Perspectives on Water Usage for Biofuels Production. Springer, Cham. https://doi.org/10.1007/978-3-319-66408-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66408-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66407-1

  • Online ISBN: 978-3-319-66408-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics