Carbon pp 175-196 | Cite as

Graphite: Carbon the Gray

  • Tapan Gupta


The gray color graphite is an allotrope of carbon, known since antiquity and has been named from the Greek verb graphein. The name was given by Abraham Gottlob, in the year 1789. The old European name is plumbago, meaning black lead. The name lead (black lead) used to mean that graphite is being used in lead pencils and should not be mixed up with the metal lead (Pb, as we can see in the periodic table of the elements). These two are completely different materials, because lead (Pb) is a metal whereas graphite is a semimetal [1–3]. Indeed, the term graphite designates mineral planar sheets of carbon atoms, with each atom bound to three neighbors in a noncompact, honeycomb structure, stacked regularly, with three-dimensional order [4].


  1. 1.
    P.R. Wallace, The band theory of graphite. Phys. Rev. 71(9), 622 (1947)CrossRefMATHGoogle Scholar
  2. 2.
    D.W. Mckee, Carbon and graphite science. Ann. Rev. Mater. Sci. 3, 195 (1973)CrossRefGoogle Scholar
  3. 3.
    S.E. Boulfelfel, A.R. Oganov, S. Leoni, P.R. Wallace, Understanding the nature of super hard graphite. Nat. Scientif. Repts. 2, 471 (2012)Google Scholar
  4. 4.
    K.-H. Kochling, B. McEnaney, S. Muller, E. Fitzer, International committee for characterization and terminology of carbon “first publication of 14 further tentative definitions”. Carbon 23(5), 601 (1985)CrossRefGoogle Scholar
  5. 5.
    D.D.L. Chung, Review graphite. J. Mater. Sci. 37, 1475 (2001)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, J.E. Panzik, B. Kiefer, K.K.M. Lee, Crystal structure of graphite under room temperature compression decompression, science. Sci. Rept. 2, Article # 520 (2012)CrossRefGoogle Scholar
  7. 7.
    L.J. Brillson, E. Burnstein, A.A. Maradudin, T. Stark, in The Physics of Semimetals and Narrow gap Semiconductors, ed. by D. L. Carter, R. T. Bate (Pergamon Press, London, 1981), p. 187Google Scholar
  8. 8.
    C.C. Barry, M.G. Norton, Beneficiation, in Ceramic Materials: Science and Engineering (Springer, Berlin, 2007)Google Scholar
  9. 9.
    J.W. Anthony, A.R. Bideaux, W.K. Bladh, W. Kenneth, C.M. Nicjols, Graphite, in Handbook of Mineralogy (US Metallurgical Soc. Am., Virginia, 1990)Google Scholar
  10. 10.
    P. Delhaes, Graphite and Precursors (CRC Press, Boca Raton, 2001)Google Scholar
  11. 11.
    H. Lipson, A.R. Stokes, A new structure of carbon. Nature 149(3777), 328 (1942)CrossRefGoogle Scholar
  12. 12.
    A.H. Taylor, Graphite Industrials and Rocks, 7th edn. (Littleton Co. AIME –Soc. Of Mining Engineers, 2005)Google Scholar
  13. 13.
    D.M. Sutphin, D.B. James, Disseminated flake graphite and amorphous graphite deposit types; an anlysis using grade and tonnage models. CIM Bull. 83(40), 85 (1990)Google Scholar
  14. 14.
    W.G. Wuckoff, Crystal Structures (John Wiley, New York, 1942)Google Scholar
  15. 15.
    C. Lorraine, Graphite a Refractory Material (Technical Vrochure, Gennevilliers, 1990)Google Scholar
  16. 16.
    G.M. Jenkins, K. Kawamura, Polymer Carbons (Cambridge University Press, Cambridge, 1976)Google Scholar
  17. 17.
    E. Fitzer, The Comosite of carbon-carbon composites. Carbon 25(2), 163 (1987)CrossRefGoogle Scholar
  18. 18.
    K.L. Smith, S.D. Smoot, T.H. Fletcher, R.J. Pugmire, The Structure and Reaction Processes of Coal (Plenum, New York, 1994)CrossRefGoogle Scholar
  19. 19.
    P.R. Solomon et al., Analysis of coal by TG-FTIR and pyrolysis modeling. J. Anal. Appl. Pyrolysis 19, 1 (1991)CrossRefGoogle Scholar
  20. 20.
    D.F. Eggers Jr., N.W. Gregory, J.D. Halsey Jr., B.S. Rabinovitch, Physical Chemistry (Wiley, New York, 1964)Google Scholar
  21. 21.
    R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc. Royal Soc. London 209, 196 (1951)CrossRefGoogle Scholar
  22. 22.
    R.E. Franklin, The structure of graphitic carbons. Acta Cryst 4, 253 (1951)CrossRefGoogle Scholar
  23. 23.
    C.R. Hoska, B.E. Warren, X-ray study of the graphitization of carbon black. J. Appl. Phys. 25, 1503 (1954)CrossRefGoogle Scholar
  24. 24.
    J. Maire, J. Maring, Graphitization of soft carbons, in Chemistry and Physics of Carbon, vol. 6, ed. by P. L. Walker (Dekker, New York/Basel, 1970), pp. 125–189Google Scholar
  25. 25.
    P. von Rague Schleyer, Introduction: aromaticity. Chem. Rev. 101(5), 1115 (2001)CrossRefGoogle Scholar
  26. 26.
    P. von Rague Schleyer, Introduction: destabilization pi and sigma. Chem. Rev. 105(10), 3433 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Huckel, Quantentheoretische Beitrage zum Benzolproblem. Z. Phys. 70(3–4), 204 (1931)CrossRefMATHGoogle Scholar
  28. 28.
    H.C. Longuet, Some studies in molecular orbital theory I., Resonance structures and molecular orbitals in unsaturated hydrocarbons. The J. Chem. Phys. 18(3), 265 (1950)CrossRefGoogle Scholar
  29. 29.
    J.C. Fitzer, The chemistry and analysis of the large polycyclic aromatic hydrocarbon, in Polycyclic Aromatic Compounds (Wiley, New York, 2000)Google Scholar
  30. 30.
    G.M. Jenkins, K. Kawamura, Structure of glassy carbon. Nature 321, 175 (1971)CrossRefGoogle Scholar
  31. 31.
    T.K. Gupta, Effect of temperature on the photosensitivity of a photoresist (AZ 1350 J). Euro. Poly. J 17(11), 1127 (1981)CrossRefGoogle Scholar
  32. 32.
    H.O. Pierson, Graphite, Diamonds and Fullerene (Elsevier, Amsterdam, 2015)Google Scholar
  33. 33.
    P.R.A. Andrews, The benefication of Canadian graphite ores: a review of presenting study at CANMET. CIM Bull. 85, 76 (1992)Google Scholar
  34. 34.
    P. Ramachandran, C. Eswaraiah, P. Manisankar, Benefication of low grade graphite ore deposits of Tamilnadu (India). Ultra Chem 8(2), 159 (2012)Google Scholar
  35. 35.
    P.J. Pugh, Non-ionic polyethylene oxide Frothers in graphite floatation. Min. Eng. 13, 151 (2000)CrossRefGoogle Scholar
  36. 36.
    I.W. Gazda, Twentieth Biennial Cof. On Carbon (University California Santa Barbara, Calfornia, 1991)Google Scholar
  37. 37.
    A.J. Massaro, Primary and Mating Ring Materials (Pure Indust. Pub, St. Marys, 1987)Google Scholar
  38. 38.
    F. Fitzer, K.H. Kochling, H.P. Boehm, H. Marsh, Pure Appl. Chem. 67(3), 473 (1995)CrossRefGoogle Scholar
  39. 39.
    J.L. White, P.M. Sheaffer, Pitch based processing of carbon-carbon composite. Carbon 27, 697 (1989)CrossRefGoogle Scholar
  40. 40.
    S. P. Appleyard, B. Rand, Carbon-Carbon composites, in Design and Control Structure of Advanced Carbon Materials for Enhanced Performance (Kluwer, New York, 2001)Google Scholar
  41. 41.
    B.T. Kelly, Physics of Graphite (Applied Science, London, 1981)Google Scholar
  42. 42.
    F. Banhart, Irradiation effects in carbon nanostructures. Rept. on Prog. In Phys. 62, 1181 (1999)CrossRefGoogle Scholar
  43. 43.
    F. Banhart, P.M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433 (1996)CrossRefGoogle Scholar
  44. 44.
    Report from High Beam Business, Chicago, Il. 60602, USAGoogle Scholar
  45. 45.
    T.K. Gupta, Handbook on Thick and Thin Film Hybrid Microelectronics (Wiley, Hoboken, 2003)CrossRefGoogle Scholar
  46. 46.
    T.K. Gupta, Copper Interconnect Technology (Springer, New York, 2009)CrossRefGoogle Scholar
  47. 47.
    C.F. Powel, J.H. Oxley, J.M. Blocher Jr., Vapor Deposition (Wiley, New York, 1966)Google Scholar
  48. 48.
    W.E. Sawer, A. Man, US Patent, 229335, June 29, (1880)Google Scholar
  49. 49.
    H.O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, 1992)Google Scholar
  50. 50.
    J.C. Bokros, in Chemistry and Physics of Carbon, vol. 5, ed. by P. L. Walker (Marcel Dekker Inc., New York, 1969)Google Scholar
  51. 51.
    H.O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Westwood, 1992)Google Scholar
  52. 52.
    J.D. Buckley, Carbon-carbon, an overview. Am.Ceramic Soc. Bull 67(2), 364 (1988)Google Scholar
  53. 53.
    B.T. Kelly, J.E. Brocklehurt, High dose fast neutron irradiation of highly oriented Pyrolytic graphite. Carbon 9, 783 (1971)CrossRefGoogle Scholar
  54. 54.
    V.M. Agranovich, L.P. Semenov, A contribution to the theory of the effect of irradiation on certain properties of graphite. J. Nuclr. Energy, Parts A/B, Reactor Sci. and Tech. 18, 141 (1964) and also R.H. Telling, M.I. Heggie, Radiation damage in graphite. Phil. Mag. 87(31), 4797 (2007)Google Scholar
  55. 55.
    P. Moreau et al., Electron energy loss spectra calculations and experiment as a tool for identification of lamellar C3N4 compound. Phys. Rev. B 73, 195111 (2006)CrossRefGoogle Scholar
  56. 56.
    R.H. Telling et al., Wigner defects bridge the graphite gap. Nat. Mater. 2, 333 (2003)CrossRefGoogle Scholar
  57. 57.
    D. McGeoghegan et al., Mortality and cancer registration experience of the sellafield workers known to have been Involved in the 1957 Windscale accident: 50 years floowup. J. Radiol. Protec 30, 407 (2010)CrossRefGoogle Scholar
  58. 58.
    R. Wakeford, Editor in chief: editorial, the wind scale reactor accident – 50 years. J. Radiol. Protec. 27, 211 (2007)CrossRefGoogle Scholar
  59. 59.
    IAEA Rept. On atomic energy, The information on Accident at the Chernobyl NPP and its Consequences, 61, 308 (1986)Google Scholar
  60. 60.
    G. Galli, Structure, stability and electronic properties of nanodiamonds, in Computer aided Modeling of Novel Carbon System and Their Properties ed. by L. Colombo, A. Fasolino (Springer-Nature, NY, 2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tapan Gupta
    • 1
  1. 1.La MesaUSA

Personalised recommendations