Advertisement

Carbon pp 139-173 | Cite as

Coal, the Black Carbon

  • Tapan Gupta
Chapter

Abstract

The first thing that we could think of about black carbon is coal. Coals are complex heterogeneous solids that consist of a large polymeric matrix of aromatic structures commonly called the coal macromolecules. These macromolecules may vary widely in their chemical and physical properties [1]. Coal is composed primarily of carbon along with variable quantities of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen [2]. Indeed, coal (from old English term Col, meaning mineral of fossilized carbon) contains mainly carbon, the conversion of dead vegetation called carbonization [3]. Archeological evidence in China indicates surface mining of coal and household usage after approximately 3490 BC [4].

References

  1. 1.
    D.W.V. Krevelen, Coal: Topology, Chemistry, Physics, and Constitution (Elsevier, New York, 1981)Google Scholar
  2. 2.
    O. Charon, S.G. Kang, K. Graham, A.F. Sarofim, J.M. Boer, Variation in coal composition, DOE Grant, RA22-86PC90751, (1986), Chem. Eng. Dept., MIT, Cambridge, MA 02139, USAGoogle Scholar
  3. 3.
    T.N. Taylor, L.E. Taylor, M. Krings, The Biology and Evolution of Fossil Plants (Academic, Cambridge, 2009)Google Scholar
  4. 4.
    J. Dodson et al., Use of Coal in Bronze Age in China (Sage, Thousand Oaks, 2014)Google Scholar
  5. 5.
    B.H. Bowen, M.W. Irwin, Coal Characteristics CCTR Basic Facts File # 8, Indiana Center for Coal Technology Research, Perdue Univ., W. Lafayette, IN. and also US Department of Energy, A brief History of Coal, 1000 Independence Avenue, SW/ Wasington, DC., Feb. 12, (2013)Google Scholar
  6. 6.
    BP statistical review of world energy, 2012, British Petroleum. Retrieved 18th August, 2011Google Scholar
  7. 7.
    J.W. de Leeuw, C. Largeau, A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation, in Organic Geochemistry: Principles and Applications, ed. by M. Engel, S. A. Macko (Springer, New York, 1993)Google Scholar
  8. 8.
    J.C. Crelling, Chemical structure of bituminous coal and its constituting maceral fractions as revealed by flash pyrolysis. Energy Fuel 6(2), 125 (1992)CrossRefGoogle Scholar
  9. 9.
    P.H. Given, Chemical Structure of Bituyminous coal, in Coal, ed. by W. francis (Arnold, London, 1961)Google Scholar
  10. 10.
    P.H. Given, An essay on the organic geochemistry of coal, in Coal Science, vol. 3, ed. by M. L. Gorbaty, J. W. Larsen, I. Wender (Academic, Orlando, 1984), p. 65Google Scholar
  11. 11.
    M.L. Gorbaty, J.W. Larsen, I. Wender, Coal Science (Academic, New York, 1982), p. 52Google Scholar
  12. 12.
    S. Norman, K.M. Thomas, Fundamental aspects of coal structural changes in the thermoplastic phase. Fuel. 77(8), 829 (1998) and P.H. Given, M.E. Peover, W.F. Wyss, Fuel. 39, 323 (1960)Google Scholar
  13. 13.
    F. Derbyshire et al., Molecular structure of coals: a debate. Fuel 68(9), 1091 (1989)CrossRefGoogle Scholar
  14. 14.
    J.H. Shinn, From coal to single stage and two stage products: a reactive model of coal structure. Fuel 63(9), 1187 (1984)CrossRefGoogle Scholar
  15. 15.
    T.H. Fletcher, R.J. Pugmire, Chemical Structure Changes of Coal, Char, and Tar During Devolatilization, DOE and NSF Joint Funded Program (University of Utah and Brigham Young University, Utah, 1994)Google Scholar
  16. 16.
    A.M. Orendt et al., in Advances in Coal Spectroscopy, ed. by H. L. C. Meuzelaar (Plenum Press, New York, 1992), pp. 215–254Google Scholar
  17. 17.
    T.N. Taylor, E.L. Taylor, M. Krings, Paleobotany, The Biology and Evolution of Fossil Plants (Academic Press, Amsterdam/Boston, 2009)Google Scholar
  18. 18.
    Eberhard Lindner: Chemie fur ingenieure: Linder Verlag Karlsruhe, S.258Google Scholar
  19. 19.
    1879. American Cyclopedia article Anthracite, source:WIKIGoogle Scholar
  20. 20.
    R. Ye et al., Coal as an abundant source of grapheme quantum dots. Nat. Commun. 4, 2943 (2013)Google Scholar
  21. 21.
    M. Hook, W. Zittel, J. Schindler, K. Aleklett, Global coal production outlooks based on a logistic model. Fuel 89, 3546 (2010)CrossRefGoogle Scholar
  22. 22.
    V. Bondarenko, I. Kovalevs’ka, K. Gonushevych, Progressive Technologies of Coal (CRC Press, E.H. Leiden, 2014), p. 225Google Scholar
  23. 23.
    J.M. Herrin, Thermal conductivity of US coal. J. Geogr Res 101(B-11), 25381 (1996)Google Scholar
  24. 24.
    R. Nuwer, A Twenty Year Low in U.S. Carbon Emission, Green, The New York Times, August 17, 2012 and also, Ron Flanary, Coal’s life continues to deam, Trains. 75(11), 8 (2015)Google Scholar
  25. 25.
    L. Coy, S. Pawson, GEOS-5 Analyses and Forecasts of the Major Stratosheric Sudden Warning of January 2013, GMAO-Res. Nat. Aeronaut. Space Admin. (NASA, US) (2013)Google Scholar
  26. 26.
    A. Simmons et al., ECMWF analyses forecasts of stratospheric winter polar Votex break up in September (2002) in southern hemisphere related events. J. Atmos. Sci. 62, 668 (2005)CrossRefGoogle Scholar
  27. 27.
    R. Scherhag, Die Explosionsartgen Stratospharenerwamungen des Spatwinters 1951.52. Ber. Deutsch. Wetterdienst (US Zone) 6, 51 (1952)Google Scholar
  28. 28.
    S.H. Beaver, Coke manufacture in Great Britain: a study in industrial geography. Trans. & Papers, Inst. Brit. Geogr. 17, 133 (1951), Royal Geographical Soc. PubGoogle Scholar
  29. 29.
    T.A. Wertime, Coming of the Ages of Steel (University of Chicago Pub, Chicago, 1962)Google Scholar
  30. 30.
    C.R. Ward, I. Suarez-Ruiz, Introduction to applied coal petrology, in Applied Coal Petrology, ed. by I. Suarez-Ruiz, J. C. Crelling (Elsevier, Amsterdam, 2008)Google Scholar
  31. 31.
    E. Burstlein, La Preparation Selective er Petrographique des Carbons en vue de Leur Cokegaction. Chal. Ind. 30, 351 (1954)Google Scholar
  32. 32.
    N. Berkowitz, An Introduction to Coal Technology (Academic, New York, 1979), p. 28Google Scholar
  33. 33.
    D. Shindell et al., Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009)CrossRefGoogle Scholar
  34. 34.
    S.C. Graham, J.B. Homer, J.J. Rosenfeld, The formation and coagulation of soot aerosols generated by the pyrolysis of aromatic hydrocarbons. Proc. R. Soc. Lond. A 344, 259 (1975)CrossRefGoogle Scholar
  35. 35.
    R. Ruthann, Polycyclic aromatic hydrocarbons, phthalates, and phenols, in Indoor Air Quality Handbook, ed. by J. Spengleer, J. M. Samet, J. F. McCarthy (McGraw Hill, New York, 2001), pp. 34.1–34.2Google Scholar
  36. 36.
    C.H.A. Wong, A. Ambrosi, M. Pumera, Thermally reduced Graphenes exhibiting a close relationship to amorphous carbon. Nanoscale 16(4), 4972 (2012)CrossRefGoogle Scholar
  37. 37.
    T.K. Gupta, Effect of temperature on electrical conduction of carbon black filled polyimide. IEEE Trans. Compon, Hybrids Manuf. Technol. 12(4), 696 (1989)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang et al., Effect of carbon black and silica fillers in elastomer blends. Macromolecules 14, 7056 (2001)CrossRefGoogle Scholar
  39. 39.
    M. Kluppel, The role of disorder in filler reinforcement of elastomers on various length scales. Adv. Polym. Sci. 164, 1 (2003)CrossRefGoogle Scholar
  40. 40.
    J.E. Mark, B. Erman, F.R. Eirich, Science and Technology of Rubber (Academic, New York, 1994), p. 188, and also Mass Production Technology for Plant Oil-based Carbon Black, (Mitsubishi Chemical, Japan, 2013)Google Scholar
  41. 41.
    Carbon Black User’s Guide, Safety, Health, and Environment, A Publication by an International Carbon Black Association, June 2004Google Scholar
  42. 42.
    K. Gardiner, Effects on respiratory morbidity of occupational exposure to carbon black: a review. Arch. Environ. Health 50(10), 44 (1995)CrossRefGoogle Scholar
  43. 43.
    K.A. Miller et al., Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 356, 447 (2007)CrossRefGoogle Scholar
  44. 44.
    M.O. Andreae, A. Gelencser, Black carbon or brown carbon? The nature of light absorbing carbonaceous aerosols. Atmos. Chem. Phys. Discuss 6, 3419–3463 (2006)CrossRefGoogle Scholar
  45. 45.
    V. Ramanathan et al., Atmospheric Brown Clouds : impact on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. 102(15), 5326 (2005)CrossRefGoogle Scholar
  46. 46.
    Jessica Blue, What is Natural Green House Effect?, National Geographic, 27 May 2013Google Scholar
  47. 47.
    W.J. Randel et al., An update of observed stratospheric temperature trends. J. Geophys. Res. 114(D2), D02107 (2009)CrossRefGoogle Scholar
  48. 48.
    R. Bailey, Global Warming and Other Eco Myths (Ronald Bailey and Competitive Enterprise Institute, Roseville, 2009)Google Scholar
  49. 49.
    A.L. Brown, T.H. Fletcher, Modeling soot derived from pulverized coal. Energy Fuel 12, 745 (1998)CrossRefGoogle Scholar
  50. 50.
    S. Gupta et al., Climate Change and Other related Policies, IPCC AR4 WG3 (2007)Google Scholar
  51. 51.
    United Nations Framework Convention on Climate Change, Compilation and Synthesis of Fifth National Communications. Executive Summary, Geneva, Switzerland, (2011)Google Scholar
  52. 52.
    International Energy Annual, 2006, International Energy Agency (IEA) Report, 9 rue de la Federation, 75739 Paris Cadex 15, France, and J.H. Cushman Jr., Coal Faces Three Hurdles and Steady Decline, Projection Show, inside climate news, May 18, 2015Google Scholar
  53. 53.
    M.R. Beychok, Coal Gassification and the Phenolsovan Process, Am. Chem. Soc. 168th Nat. Meet. Atlantic City, Sept (1974)Google Scholar
  54. 54.
    K.-G. Fahlbusch et al., Flavors and Frgrance, in Encyclopedia of Industrial Chemistry, (Wiley, Hoboken, NJ, 2003)Google Scholar
  55. 55.
    A.W. Hofmann, On insolinic acid. Proc. R. Soc. Lond. 8, 1 (1855)CrossRefGoogle Scholar
  56. 56.
    P. von Rague Schleyer, Introduction: delocalized pi and sigma. Chem. Rev. 105(10), 3433 (2005)CrossRefGoogle Scholar
  57. 57.
    T.L. Gilchrist, Hetro Cyclic Chemistry (Longman, New York, 1997)Google Scholar
  58. 58.
    D.J. Brown, R.F. Evans, W.B. Cowden, M.D. Fenn, The Pyrimidines (Wiley, New York, 1994)Google Scholar
  59. 59.
    P.R. Solomon, M.A. Serio, Evaluation of coal pyrolysis kinetics, in Fundamentals of the Physical Chemistry of Pulverized Coal Combustion, ed. by J. Lahaye, G. Prado (Martinus Nijhoff, Dordrecht, 1987), pp. 126–151Google Scholar
  60. 60.
    T.H. Fletcher, M.S. Solum, D.M. Grant, S. Critchfield, R.J. Pugmire, 26th International Symposium On Combustion, The Combustion Inst, Pittsburgh, PA, p. 1231, (1990)Google Scholar
  61. 61.
    C.R. Monson, G.K. Germane, A high pressure drop-tube facility for coal combustion studies. Energy Fuels 7, 928 (1993)CrossRefGoogle Scholar
  62. 62.
    C.R. Monson, Ph.D. Dissertation, Mechanical Engineering Department, BRIGHAM University, Utah, USAGoogle Scholar
  63. 63.
    T.-C.L. Chang, C. Karr Jr., Gas-liquid chromatographic analysis of aromatic hydrocarbons boiling between 202 C and 280 C in a low temperature coal tar. Anal. Chem. Acta 24, 343 (1961)CrossRefGoogle Scholar
  64. 64.
    J.G. Speight, The Chemistry and Technology of Coal, 3rd edn. (CRC Press, Boca Raton, 2013), p. 719Google Scholar
  65. 65.
    H. Ratte, J. Geller, Conitinuous Distillation of Coal Tar, US Patent # us 2868713A, Jan 1959Google Scholar
  66. 66.
    K.D. Bartle, D.W. Jones, in Analytical Methods for Coal and Coal Products, vol. 11, ed. by C. Karr Jr. (Academic, New York, 1978), pp. 103–160Google Scholar
  67. 67.
    S.A. Wise et al., Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Anal. Chem. 60(9), 887 (1988)CrossRefGoogle Scholar
  68. 68.
    L.S. Lee, P.S.C. Rao, I. Okuda, Equillibrium Partioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ. Sci. Technol. 26(11), 2110 (1992)CrossRefGoogle Scholar
  69. 69.
    I.M. Fanasov, A.V. Kepman, A.N. Seleznev, V.A. Avdeev, Determination of polycyclic aromatic hydrocarbons in coal tar pitch. J. Analyt. Chem. 64(4), 361 (2009)CrossRefGoogle Scholar
  70. 70.
    J.W. Rice, J. Fu, E.M. Suuberg, Thermodynamics multicomponent PAH mixtures and development of tar like behavior. Ind. Eng. Chem. Res. 50(6), 3613 (2011)CrossRefGoogle Scholar
  71. 71.
    S.S. Deshpande, Food Technology (Marcel Dekker, New York, 2002), p. 286Google Scholar
  72. 72.
    I.B. Beriman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971)Google Scholar
  73. 73.
    F. Rpdriguez, J.C. Burillo, L.F. Adrados, J.F. Tijero, Recovery of anthracene from coal tar by solvent extraction. Sep. Sci. Technol. 24(3–4), 275 (1989)CrossRefGoogle Scholar
  74. 74.
    D. Patranabi, Sensors and Transducers, 2nd edn. (PHI Pub, Delhi, 2002), p. 224Google Scholar
  75. 75.
    R.C. Powell, L.A. Harrah, Non-linear responses of poly (venyl toluene) plastic scintillators at high excitation dose. J. Chem. Phys. 55, 1878 (1971)CrossRefGoogle Scholar
  76. 76.
    K.D. Bakes, Evaluating the Response of Polyvenyl Toluene Scintillators Used in Portal Detectors, Ph.D. Thesis, Airforce Institute of Technology, Dept. of Eng. Phys., Wright-Patterson Airforce Base, OH. Mar 2008Google Scholar
  77. 77.
    D.J. Mitchell, C. Brusseau, Neutron Counting and Gamma Ray Spectroscopy with PVT Detectors, Sandia Rept. SAND 2011–4361, June (2011), Sandia Nat. Lab. Albuquerque, New MexicoGoogle Scholar
  78. 78.
    A.W. Date, Analytical Combustion with Thermodynamics: Chemical Kinetics and Mass Transfer (Cambridge University Press, New York, 2011)CrossRefGoogle Scholar
  79. 79.
    K. Komatsua, Y. Murataa, N. Sugitaa, K. Takeuchib, T.S.M. Wan, Use of naphthalene as a solvent for selective formation of the 1:1 diels-alder adduct of C60 with anthracene. Tetrahedron Lett. 34(52), 8473 (1993)CrossRefGoogle Scholar
  80. 80.
    G.M. Roy, Activated Carbon Applications in Food and Pharmaceutical Industries (CRC Press, Roca Baton, 1995), p. 125Google Scholar
  81. 81.
    D.M. Hudgins, C.W. Bauschlicher Jr., L.J. Allamandola, Variations in the peak position of 6.2μm interstellar emission feature:a tracer of N in the interstellar polycyclic aromatic hydrocarbon population. Astrophys. J. 632, 316 (2014)CrossRefGoogle Scholar
  82. 82.
    S. Battersby, Space Molecules Point to Organic Origins, New Scientists, 11 Dec 2009Google Scholar
  83. 83.
    G. Mullas, G. Malloci, C. Joblin, D. Toublanc, Estimated IR and phosphorescence Emision fluxes for specific polycyclic aromatic hydrocarbons in the red rectangle. Astron. Astrophys. 446(2), 537 (2006)CrossRefGoogle Scholar
  84. 84.
    D.A. Garcia-Hernandez et al., Formation of fullerenes in H-containing platary nebulae. Astron. J. Lett. 724(1), l39 (2009)CrossRefGoogle Scholar
  85. 85.
    N. Atkinson, Buckyballs Could be Plentiful in the Universe, Universe Today, 10 Oct 2010Google Scholar
  86. 86.
    S.M. Gudipati, R. Yang, In situ probing of radiation induced processing of organics in astrophysical ice analogs---novel Lser desorption laser ionization time of flight mass spectroscopic studies. Astron. J. Lett. 756(1), L24 (2012)CrossRefGoogle Scholar
  87. 87.
    S.M. Gudipati, R. Jacovi, I.C. Tamburelli, A. Lignell, M. Allen, Photochemical activity of Titan’s long altitude condensed haze. Nat. Commun. 4, 1648 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tapan Gupta
    • 1
  1. 1.La MesaUSA

Personalised recommendations