Skip to main content

Carbon Composites and Related Metal Matrix

  • Chapter
  • First Online:
Book cover Carbon
  • 1529 Accesses

Abstract

The history of carbon composites dates back to the late 1800s. Thomas Edison used carbon composite filament in light bulbs. A carbon composite is composed of two or more materials to create a superior and unique material. Edison’s carbon composite filaments were made out of cellulose-based materials, such as cotton or bamboo, unlike the petroleum-based precursors used today. It was not until late 1950s that high tensile strength carbon fibers were discovered [1–3]. However, the first truly modulus commercial grade carbon fibers were invented in 1964. The benefits of these high-strength carbon-based composites are that they weighed a fraction of the weight of steel, yet contained much greater tensile strength than steel [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. High performance carbon fibers, National Historic Chemical Landmarks, Am. Chem. Soc., (2014)

    Google Scholar 

  2. A.K. Kaw, Mechanics of Composite Materials, 2nd edn. (CRC Press, Boka Raton, 2005)

    MATH  Google Scholar 

  3. J.M. Corum, R.L. Battiste, K.C. Liu, M.B. Ruggles, Basic properties of reference crossply carbon fiber composite, Oak Ridge Nat. Lab. ORNL/TM-2000/29, DE-ACo5-96OR-22464

    Google Scholar 

  4. N. Baral, H. Guezenoc, P. Davies, C. Baley, High modulus carbon fibre composites: correlation between transverse tensile and module I interlaminar fracture properties. Mater. Lett. 62(6–7), 1096 (2008)

    Article  Google Scholar 

  5. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30(7), 649 (2014)

    Article  Google Scholar 

  6. H. Hatta, T. Aoi, I. Kawaha, Y. Kogo, I. Shiota, Tensile strength of carbon-carbon composites: 1-effect of C-C density. J. Compos. Mater. 38(19), 1667 (2004)

    Article  Google Scholar 

  7. H.M. Stoller, E.R. Frye, 73rd Syp. On Am Chem. Soc., Adv. Mater. Composite and Carbon, Annual Meeting, Am. Ceram Soc. (1973), p. 163

    Google Scholar 

  8. L.M. Manocha, High performance carbon carbon composite. Sadhana 28, 349 (2003)

    Article  Google Scholar 

  9. The Int. Handbook Committee, Vol. 1, of Engineered Materials Handbook. (ASM Int. Pub, Ohio, 1971) and also P. Morgan, Carbon Fibers and Their Composites (Taylor and Francis, FL, 2005)

    Google Scholar 

  10. H.M. Stoller, E.R. Eyre, Symposium of the 73rd Annual Meeting of the American Ceramic Society, Advanced Materials Composite and Carbon, Am. Ceram. Soc., (1973), p. 163

    Google Scholar 

  11. D.F. Pedraza, P.G. Klemens, Effective conductivity of polycrystalline graphite. Carbon 31(6), 951 (1993)

    Article  Google Scholar 

  12. R. Jain, L. Lee, Fiber Reinforced Polymer (FRP) Composites for Infrastructure Applications. Focussing on Inovation, Technology Implementation and Sustainability (Springer, New York, 2012)

    Google Scholar 

  13. M.J. Hinton, P.D. Soden, A.S. Kaddour, The world wide failure exercise, in Failure Criteria in Fiber-Reinforced-Polymer Composite, (Elsevier, Amsterdam, 2004)

    Google Scholar 

  14. J.D. Buckley, D.D. Edie, Carbon-Carbon Materials and Composites (Noyes, Park Ridge, 1993)

    Google Scholar 

  15. M.K. Seo, S.H. Park, S.H. Kang, S.J. Park, Carbon fibers (III), recent technical and patent trends. Carbon Lett. 10(1), 43 (2009)

    Article  Google Scholar 

  16. A.K. Gupta, D.K. Paliwal, P. Bajaj, Melting behavior of acrylonitrile. J. Appl. Polym. Sci. 70, 2703 (1998)

    Article  Google Scholar 

  17. P. Bajaj, T. Sreekumar, K. Sen, Effect of reaction medium on radical polymerization of acrylonitrile with venyl acids. J. Appl. Polym. Sci. 79, 1640 (2001)

    Article  Google Scholar 

  18. A. Serkov, M. Radishevskii, Status and prospects for production of carbon fibers based on Polyacrylonitrile. Fiber Chem. 40, 24 (2008)

    Article  Google Scholar 

  19. D. Papkov et al., Simultaneously strong and tough ultra fine continuous nanofibers. ACS Nano 7(4), 3324 (2013)

    Article  Google Scholar 

  20. E. Fitzer, PAN based carbon fibers –present state and trend of the technology from the view point of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5), 621 (1989)

    Article  Google Scholar 

  21. E. Fitzer, W. frobs, M. Heine, Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibers. Carbon 24(4), 387 (1986)

    Article  Google Scholar 

  22. G.S. Bhat et al., New aspects in stabilization of acrylic fibers for carbon fibers. Carbon 28(2–3), 377 (1990)

    Article  Google Scholar 

  23. S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Effect of process conditionon tensile properties of carbon fiber. Carbon Lett. 12(1), 26 (2011)

    Article  Google Scholar 

  24. S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv. Chem. Eng. Sci. 2, 275 (2012)

    Article  Google Scholar 

  25. H.O. Pierson, Hand Book of Carbon, Graphite, Diamond and Fullerenes (Noyace, NJ, 1984)

    Google Scholar 

  26. R.J. Diefendrof, Continuous Carbon Fiber Reinforced Carbon Matrix Composites in Composites, Ed. ASM Int. Handbook Committee, Vol.1 of Engineered Materials Handbook (ASM International, OH, 1987), p. 911

    Google Scholar 

  27. M. Balasubramanium, Composite Materials and Processing (CRC Press, Boka Raton, 2013)

    Book  Google Scholar 

  28. K.H. Bang, G.-Y. Chung, H.H. Koo, Preparation of C/C composites by chemical vapor infiltration (CVI) of propane pyrolysis. Korean J. Chem. Eng. 28(1), 272 (2011)

    Article  Google Scholar 

  29. V. Liedike, K.J. Hunttinger, Pitches as matrix precursor of carbon fiber reinforced carbon: II Stabilization of mesophase pitch matrix by oxygen treatment. Carbon 35(9), 106 (1996)

    Google Scholar 

  30. M. Hoffstetter, E. Wintermantel, Meso fiber –a novel approach to reinforce micro parts. Biomaterials 41(12), 1011 (2010)

    Google Scholar 

  31. X. Haung, Fabrication properties of carbon fibers. Materials 2, 2369 (2009)

    Article  Google Scholar 

  32. T. Roberts, The Carbon Fiber Industries: Global Strategic Market Evaluations, 2006–2010, Mater. Technol. Pub. Watford, UK., pp. 93–177, (2006) and E. Fitzer, Pan-Based Carbon Fibers –Present State and Trend of the Technology from the View Point of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters, Carbon 27(5), 621 (1989)

    Google Scholar 

  33. G.B. Kauffman, Rayon, first synthetic fiber product. J. Chem. Educ. 70(11), 887 (1993)

    Article  Google Scholar 

  34. J.D.E. White, A.H. Simpson, A.S. Shteinberg, A.S. Mukasyan, Cobustion joining of refractory materials: carbon-carbon composite. J. Mater. Res. 23(1), 160 (2007)

    Article  Google Scholar 

  35. F.K. Fo, Preform fiber architecture for ceramic matrix composite. Ceram. Bull. 68(2), 401 (1989)

    Google Scholar 

  36. R. Warren, Ceramic Matrix Composites (Blackie and Son, London, 1992)

    Google Scholar 

  37. D.D.L. Chung, Carbon-Carbon Composites (Butterworth Heinemann, Newton, 1994), p. 131

    Google Scholar 

  38. J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014)

    Google Scholar 

  39. K. Kuniya, H. Arakawa, T. Kanai, T. Yasuda, Development of copper-carbon fiber composite for electrodes of power semicinductor devices. IEEE Trans. Comp. Hybrid. Manuf. Technol. 6(4), 467 (1983)

    Article  Google Scholar 

  40. J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014)

    Google Scholar 

  41. P.M. Geffroy, J.F. Silvan, Structural and thermal properties of hot-pressed Cu/C matrix composites materials used for the thermal management of high power electronic devices. Mater. Sci. Forum 534-536, 1505–1508 (2007)

    Article  Google Scholar 

  42. A. Burkert, Materials and Corrosion (Wiley, New York, 2001)

    Google Scholar 

  43. H.P. Hack, Galvanic Corrosion (ASTM Intl, Philadelphia, 1988)

    Book  Google Scholar 

  44. K. Upadhya, Ceramics and composites for rocket engines and space structures. J. Metals 44, 15–18 (1992)

    Google Scholar 

  45. M. Singh, T.P. Shpargel, G.N. Morscher, R. Asthana, Active metal brazing and characterization of brazed joints in titanium to carbon-carbon composites. Mater. Sci. Eng. 412(1–2), 123 (2005)

    Article  Google Scholar 

  46. R. Naslain, Materials design and Procrssing of high temperature ceramic matrix composites: state of the art and future trends. Adv. Compos. Mater. 8(1), 3 (1999)

    Article  Google Scholar 

  47. Q. Zhang, G. Li, A review of the application of C/SiC composites in thermal protecting systems. Multidiscip. Model. Mater. Struct. 5(2), 199 (2009)

    Article  Google Scholar 

  48. R.B. Deo, J.H. Starnes, R.C. Holzwarth, Low cost composite materials and structures for aircraft applications, Scitific and Technical Aerospace Rept. (STAR), 41 (22): 1-1-1-11, NASA, USA (2003)

    Google Scholar 

  49. R. Naslain, Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors, an overview. Compos. Sci. Technol. 64, 155 (2004)

    Article  Google Scholar 

  50. Z. Rak, CF/SiC/C composites for tribological application, in High Temperature Ceramic Matrix Composites, ed. by W. Krenkel, R. Naslain, H. Schneider (Wiley, Weinheim, 2001), p. 820

    Google Scholar 

  51. W. Krenkel, Carbon fibre reinforced silicon carbide composites, in Handbook of Ceramic Composites, ed. by N. P. Bansal (Springer, Heidelberg, 2005), p. 117

    Google Scholar 

  52. C.P. Ju, C.K. Wang, H.Y. Cheng, J.H.C. Lin, Process and wear behavior of monolithic SiC and short carbon fiber-SiC matrix composite. J. Mater. Sci. 35, 4477 (2000)

    Article  Google Scholar 

  53. W. Kucler, Chemische Technik: Prozesse, vol 8, ed. by R. Dittmeyer et al. (Wiley-VCH, Weinham, 2005), p. 11166

    Google Scholar 

  54. C.A. Nannetti, A. Ortona, D.A. de Pinto, B. Riccardi, Manufacturing SiC-fibre reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis. J. Am. Ceram. Soc. 87, 1205 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, T. (2018). Carbon Composites and Related Metal Matrix. In: Carbon. Springer, Cham. https://doi.org/10.1007/978-3-319-66405-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66405-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66404-0

  • Online ISBN: 978-3-319-66405-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics