Carbon pp 71-87 | Cite as

Carbon Composites and Related Metal Matrix

  • Tapan Gupta


The history of carbon composites dates back to the late 1800s. Thomas Edison used carbon composite filament in light bulbs. A carbon composite is composed of two or more materials to create a superior and unique material. Edison’s carbon composite filaments were made out of cellulose-based materials, such as cotton or bamboo, unlike the petroleum-based precursors used today. It was not until late 1950s that high tensile strength carbon fibers were discovered [1–3]. However, the first truly modulus commercial grade carbon fibers were invented in 1964. The benefits of these high-strength carbon-based composites are that they weighed a fraction of the weight of steel, yet contained much greater tensile strength than steel [4].


  1. 1.
    High performance carbon fibers, National Historic Chemical Landmarks, Am. Chem. Soc., (2014)Google Scholar
  2. 2.
    A.K. Kaw, Mechanics of Composite Materials, 2nd edn. (CRC Press, Boka Raton, 2005)MATHGoogle Scholar
  3. 3.
    J.M. Corum, R.L. Battiste, K.C. Liu, M.B. Ruggles, Basic properties of reference crossply carbon fiber composite, Oak Ridge Nat. Lab. ORNL/TM-2000/29, DE-ACo5-96OR-22464Google Scholar
  4. 4.
    N. Baral, H. Guezenoc, P. Davies, C. Baley, High modulus carbon fibre composites: correlation between transverse tensile and module I interlaminar fracture properties. Mater. Lett. 62(6–7), 1096 (2008)CrossRefGoogle Scholar
  5. 5.
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30(7), 649 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Hatta, T. Aoi, I. Kawaha, Y. Kogo, I. Shiota, Tensile strength of carbon-carbon composites: 1-effect of C-C density. J. Compos. Mater. 38(19), 1667 (2004)CrossRefGoogle Scholar
  7. 7.
    H.M. Stoller, E.R. Frye, 73rd Syp. On Am Chem. Soc., Adv. Mater. Composite and Carbon, Annual Meeting, Am. Ceram Soc. (1973), p. 163Google Scholar
  8. 8.
    L.M. Manocha, High performance carbon carbon composite. Sadhana 28, 349 (2003)CrossRefGoogle Scholar
  9. 9.
    The Int. Handbook Committee, Vol. 1, of Engineered Materials Handbook. (ASM Int. Pub, Ohio, 1971) and also P. Morgan, Carbon Fibers and Their Composites (Taylor and Francis, FL, 2005)Google Scholar
  10. 10.
    H.M. Stoller, E.R. Eyre, Symposium of the 73rd Annual Meeting of the American Ceramic Society, Advanced Materials Composite and Carbon, Am. Ceram. Soc., (1973), p. 163Google Scholar
  11. 11.
    D.F. Pedraza, P.G. Klemens, Effective conductivity of polycrystalline graphite. Carbon 31(6), 951 (1993)CrossRefGoogle Scholar
  12. 12.
    R. Jain, L. Lee, Fiber Reinforced Polymer (FRP) Composites for Infrastructure Applications. Focussing on Inovation, Technology Implementation and Sustainability (Springer, New York, 2012)Google Scholar
  13. 13.
    M.J. Hinton, P.D. Soden, A.S. Kaddour, The world wide failure exercise, in Failure Criteria in Fiber-Reinforced-Polymer Composite, (Elsevier, Amsterdam, 2004)Google Scholar
  14. 14.
    J.D. Buckley, D.D. Edie, Carbon-Carbon Materials and Composites (Noyes, Park Ridge, 1993)Google Scholar
  15. 15.
    M.K. Seo, S.H. Park, S.H. Kang, S.J. Park, Carbon fibers (III), recent technical and patent trends. Carbon Lett. 10(1), 43 (2009)CrossRefGoogle Scholar
  16. 16.
    A.K. Gupta, D.K. Paliwal, P. Bajaj, Melting behavior of acrylonitrile. J. Appl. Polym. Sci. 70, 2703 (1998)CrossRefGoogle Scholar
  17. 17.
    P. Bajaj, T. Sreekumar, K. Sen, Effect of reaction medium on radical polymerization of acrylonitrile with venyl acids. J. Appl. Polym. Sci. 79, 1640 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Serkov, M. Radishevskii, Status and prospects for production of carbon fibers based on Polyacrylonitrile. Fiber Chem. 40, 24 (2008)CrossRefGoogle Scholar
  19. 19.
    D. Papkov et al., Simultaneously strong and tough ultra fine continuous nanofibers. ACS Nano 7(4), 3324 (2013)CrossRefGoogle Scholar
  20. 20.
    E. Fitzer, PAN based carbon fibers –present state and trend of the technology from the view point of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5), 621 (1989)CrossRefGoogle Scholar
  21. 21.
    E. Fitzer, W. frobs, M. Heine, Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibers. Carbon 24(4), 387 (1986)CrossRefGoogle Scholar
  22. 22.
    G.S. Bhat et al., New aspects in stabilization of acrylic fibers for carbon fibers. Carbon 28(2–3), 377 (1990)CrossRefGoogle Scholar
  23. 23.
    S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Effect of process conditionon tensile properties of carbon fiber. Carbon Lett. 12(1), 26 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv. Chem. Eng. Sci. 2, 275 (2012)CrossRefGoogle Scholar
  25. 25.
    H.O. Pierson, Hand Book of Carbon, Graphite, Diamond and Fullerenes (Noyace, NJ, 1984)Google Scholar
  26. 26.
    R.J. Diefendrof, Continuous Carbon Fiber Reinforced Carbon Matrix Composites in Composites, Ed. ASM Int. Handbook Committee, Vol.1 of Engineered Materials Handbook (ASM International, OH, 1987), p. 911Google Scholar
  27. 27.
    M. Balasubramanium, Composite Materials and Processing (CRC Press, Boka Raton, 2013)CrossRefGoogle Scholar
  28. 28.
    K.H. Bang, G.-Y. Chung, H.H. Koo, Preparation of C/C composites by chemical vapor infiltration (CVI) of propane pyrolysis. Korean J. Chem. Eng. 28(1), 272 (2011)CrossRefGoogle Scholar
  29. 29.
    V. Liedike, K.J. Hunttinger, Pitches as matrix precursor of carbon fiber reinforced carbon: II Stabilization of mesophase pitch matrix by oxygen treatment. Carbon 35(9), 106 (1996)Google Scholar
  30. 30.
    M. Hoffstetter, E. Wintermantel, Meso fiber –a novel approach to reinforce micro parts. Biomaterials 41(12), 1011 (2010)Google Scholar
  31. 31.
    X. Haung, Fabrication properties of carbon fibers. Materials 2, 2369 (2009)CrossRefGoogle Scholar
  32. 32.
    T. Roberts, The Carbon Fiber Industries: Global Strategic Market Evaluations, 2006–2010, Mater. Technol. Pub. Watford, UK., pp. 93–177, (2006) and E. Fitzer, Pan-Based Carbon Fibers –Present State and Trend of the Technology from the View Point of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters, Carbon 27(5), 621 (1989)Google Scholar
  33. 33.
    G.B. Kauffman, Rayon, first synthetic fiber product. J. Chem. Educ. 70(11), 887 (1993)CrossRefGoogle Scholar
  34. 34.
    J.D.E. White, A.H. Simpson, A.S. Shteinberg, A.S. Mukasyan, Cobustion joining of refractory materials: carbon-carbon composite. J. Mater. Res. 23(1), 160 (2007)CrossRefGoogle Scholar
  35. 35.
    F.K. Fo, Preform fiber architecture for ceramic matrix composite. Ceram. Bull. 68(2), 401 (1989)Google Scholar
  36. 36.
    R. Warren, Ceramic Matrix Composites (Blackie and Son, London, 1992)Google Scholar
  37. 37.
    D.D.L. Chung, Carbon-Carbon Composites (Butterworth Heinemann, Newton, 1994), p. 131Google Scholar
  38. 38.
    J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014)Google Scholar
  39. 39.
    K. Kuniya, H. Arakawa, T. Kanai, T. Yasuda, Development of copper-carbon fiber composite for electrodes of power semicinductor devices. IEEE Trans. Comp. Hybrid. Manuf. Technol. 6(4), 467 (1983)CrossRefGoogle Scholar
  40. 40.
    J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014)Google Scholar
  41. 41.
    P.M. Geffroy, J.F. Silvan, Structural and thermal properties of hot-pressed Cu/C matrix composites materials used for the thermal management of high power electronic devices. Mater. Sci. Forum 534-536, 1505–1508 (2007)CrossRefGoogle Scholar
  42. 42.
    A. Burkert, Materials and Corrosion (Wiley, New York, 2001)Google Scholar
  43. 43.
    H.P. Hack, Galvanic Corrosion (ASTM Intl, Philadelphia, 1988)CrossRefGoogle Scholar
  44. 44.
    K. Upadhya, Ceramics and composites for rocket engines and space structures. J. Metals 44, 15–18 (1992)Google Scholar
  45. 45.
    M. Singh, T.P. Shpargel, G.N. Morscher, R. Asthana, Active metal brazing and characterization of brazed joints in titanium to carbon-carbon composites. Mater. Sci. Eng. 412(1–2), 123 (2005)CrossRefGoogle Scholar
  46. 46.
    R. Naslain, Materials design and Procrssing of high temperature ceramic matrix composites: state of the art and future trends. Adv. Compos. Mater. 8(1), 3 (1999)CrossRefGoogle Scholar
  47. 47.
    Q. Zhang, G. Li, A review of the application of C/SiC composites in thermal protecting systems. Multidiscip. Model. Mater. Struct. 5(2), 199 (2009)CrossRefGoogle Scholar
  48. 48.
    R.B. Deo, J.H. Starnes, R.C. Holzwarth, Low cost composite materials and structures for aircraft applications, Scitific and Technical Aerospace Rept. (STAR), 41 (22): 1-1-1-11, NASA, USA (2003)Google Scholar
  49. 49.
    R. Naslain, Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors, an overview. Compos. Sci. Technol. 64, 155 (2004)CrossRefGoogle Scholar
  50. 50.
    Z. Rak, CF/SiC/C composites for tribological application, in High Temperature Ceramic Matrix Composites, ed. by W. Krenkel, R. Naslain, H. Schneider (Wiley, Weinheim, 2001), p. 820Google Scholar
  51. 51.
    W. Krenkel, Carbon fibre reinforced silicon carbide composites, in Handbook of Ceramic Composites, ed. by N. P. Bansal (Springer, Heidelberg, 2005), p. 117Google Scholar
  52. 52.
    C.P. Ju, C.K. Wang, H.Y. Cheng, J.H.C. Lin, Process and wear behavior of monolithic SiC and short carbon fiber-SiC matrix composite. J. Mater. Sci. 35, 4477 (2000)CrossRefGoogle Scholar
  53. 53.
    W. Kucler, Chemische Technik: Prozesse, vol 8, ed. by R. Dittmeyer et al. (Wiley-VCH, Weinham, 2005), p. 11166Google Scholar
  54. 54.
    C.A. Nannetti, A. Ortona, D.A. de Pinto, B. Riccardi, Manufacturing SiC-fibre reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis. J. Am. Ceram. Soc. 87, 1205 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tapan Gupta
    • 1
  1. 1.La MesaUSA

Personalised recommendations