Advertisement

Carbon pp 47-70 | Cite as

Historical Production and Use of Carbon Materials: The Activated Carbon

  • Tapan Gupta
Chapter

Abstract

The use of carbon extends far back to 3750 BC, for the reduction of copper (Cu), zinc (Zn), and tin (Sn) ores in the manufacture of bronze by the Egyptians and Sumerians. In 157 AD, carbons of both vegetable and animal origin had been used for the treatment of a wide range of diseases. In the year 1773, Car Wilhelm, a chemist from Pomerania, a Baltic coast of Europe under Swedish control, recognized the absorptive power of carbon-derived materials from different sources. However, marketing of first industrially produced activated carbon, Eponit (trade name), was first reported in the year 1911 by the Fanto Works, Austria [1]. The largest market for activated carbon is currently in the municipal water purification industry.

References

  1. 1.
    F. Derbyshire, M. Jagtoyen, M. Thwaites, Activated Carbons-Production and Applications, in Porosity in Carbons, ed. by Patrick, J.W., Edward Arnolds, London, (1955) and also E.P. Leimkuehler, Production, Characterization and Applications of activated carbon, Ph.D. Thesis, University of Missouri, (2010)Google Scholar
  2. 2.
    R.H. Bradley, I. Sutherland, E. Sheng, Carbon surface: area porosity, chemistry and energy. J. Colloid Interface Sci. 179(2), 561 (1996)CrossRefGoogle Scholar
  3. 3.
    K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects. J. Hazard. Mater. 170, 352 (2009)CrossRefGoogle Scholar
  4. 4.
    F. Cecen, O. Aktas, Activated Carbon for Water and Waste Water Treatment, Integration Adsoptin and Biological Treatment (Wiley-VCH, Weinheim, 2011)CrossRefGoogle Scholar
  5. 5.
    S. Ismadji et al., Activated carbon from char obtained from vacuum pyrolysis of teak dust: por structure development and characterization. Bioresource Tech. 96, 1364 (2005.) and also S. Gao et al., Coal based magnetic activated carbon as a high performance adsorbent for methylene blue. J. Porous Mat., 23(4), 877 (2016)CrossRefGoogle Scholar
  6. 6.
    G.D. Living, J. Dewar, On the separation of the least volatile gases of atmospheric air, and their spectra. Proc. R. Soc. London 68(442–450), 389 (1901)CrossRefGoogle Scholar
  7. 7.
    Y.H. Kang, A. Shiue, S.C. Hu, C.-Y. Haung, H.T. Chen, Using phosphoric acid impregnated activated carbon to improve the efficiency of chemical filters for the removal of Air-borne Molecular Contaminants (AMCS) in the Make Up Air Unit (MAU) of a clean room. Building and Environ 45(4), 929 (2010)CrossRefGoogle Scholar
  8. 8.
    W. Liu, R.D. Vidic, T.D. Brown, Optimization of Sulfur impregnated protocol for fixed bed application of activated carbon based Sorbentsfor gas phase mercury removal. Environ. Sci. Technol. 32, 531 (1998)CrossRefGoogle Scholar
  9. 9.
    D.M. Rutheven, Principles of Adsorption and Adsorption Process (Wiley, New York, 1994)Google Scholar
  10. 10.
    M. Suzuki (ed.), Fundamentals of Adsorption (Elsevier, Amsterdam, 1993)Google Scholar
  11. 11.
    H. Kayser, Annalen der Physik und Chemie (cerlag von Jonann Ambrosius Barth, Leipzig, 1835)Google Scholar
  12. 12.
    N.A. Rashidi, S. Yusup, L.H. Loong, Kinetic studies on carbon dioxide capture using activated carbon. Chem. Eng. Trans. 35, 381 (2013)Google Scholar
  13. 13.
    Overview of Green House Gasses. Annual report of Environmental Protection Agencies, (EPA) U.S. April 14, 2013Google Scholar
  14. 14.
    G. Skodras, I. Diamantopoulou, G. Pantoleontos, G.P. Sakellaropoulos, Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. J. Hazard. Mater 158, 1 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Dabrowski, Adsorption – from theory to practice. Adv. Colloid Interf. Sci. 93, 135 (2001)CrossRefGoogle Scholar
  16. 16.
    K.J. Laider, The World of Physical Chemistry (Oxford University Press, Oxford, London, 1993), p. 309Google Scholar
  17. 17.
    S. Brunauer, L.S. Deming, E. Teller, On the theory of van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723 (1940)CrossRefGoogle Scholar
  18. 18.
    S. Brunauer, The Adsorption of Gases and Vapors, vol 1 (Oxford University Press, Oxford, London, 1945), p. 154Google Scholar
  19. 19.
    S. Brunauer, P.H. Emmet, E. Teller, Adsorption of gases in mutuimolecular layers. J. Am. Chem. Soc. 60(2), 309 (1938)CrossRefGoogle Scholar
  20. 20.
    K.S.W. Sing, in Physical Adsorption : Experiment, Theory, and Applications, NATO ASI Series, ed. by J. M. Fraissard, C. W. Conner (Kluwer, Dordrecht, 1996)Google Scholar
  21. 21.
    M.M. Dublin, L.W. Radushkevich, The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci., USSR Phys. Chem. Sect. 55, 331 (1947)Google Scholar
  22. 22.
    M. Polanyi, Adsorption of gases (vapors) by a solid non-volatile adsorbant. verh. Deutsch. Phys. Ges 16, 55 (1916)Google Scholar
  23. 23.
    D.M. Young, A.D. Crowell, Physical Adsorption of Gases (Butterworth & Co., Ltd., London, 1962.) and also J. Oscik, Adsorption, Elis Horwood, Chichester, PWN, Warsaw (1982)Google Scholar
  24. 24.
    J.H. de Boer, Advances in Catalysis, vol 8 (Academic Press, New York, 1956)Google Scholar
  25. 25.
    R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, London, 1943)MATHGoogle Scholar
  26. 26.
    A.W. Anderson, Physical Chemistry of Surfaces (John Wiley, New York, 1990)Google Scholar
  27. 27.
    D.M. Young, A.D. Crowell, Physical Adsorption of Gases (Butterworth, London, 1962)Google Scholar
  28. 28.
    H. Marsh, F. Rodriguez-Reinoso, Activated Carbon (Elsevier, Amsterdam, 2006), p. 155Google Scholar
  29. 29.
    R.C. Bansel, M. Goyal, Activated Carbon (Taylor and Francis Pub, New York, 2005)CrossRefGoogle Scholar
  30. 30.
    S. Biloe, V. Goetz, S. Mauran, Characterization of adsorbent composite blocks for methane storage. Carbon 39, 1653 (2001)CrossRefGoogle Scholar
  31. 31.
    M. Thommes et al., Adsortion hysteresis of nitrogen and argon in pore network and characterization of novel micro-and mesoporous silicates. Langmuir 22, 756 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Thommes, Physical adsorption characterization of nanoporous materials. Chemie Ingenieeur Technik 82(7) (2010)Google Scholar
  33. 33.
    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids (Academic Press, San Diego, CA, 1999)Google Scholar
  34. 34.
    H.G. Charles, Chemical Engineering Kinetics and Reactor Design (John Wiley, NY, 2009), pp. 447–451Google Scholar
  35. 35.
    D.M. Ruthevan, Principles of Adsorption and Adsorption Process (John Wiley, New York, 1994.) Chapt-5Google Scholar
  36. 36.
    E.W. Thiele, Relation between catalytic activity and size of particle. Indust. Eng. Chem. 31, 916 (1939)CrossRefGoogle Scholar
  37. 37.
    C. Hill, An Introduction to Chemical Engineering and Reactor Design (John Wiley, New York, 1977), pp. 440–446Google Scholar
  38. 38.
    S. Lagergren, About the Theory of So-Called Adsorption of Soluble Substances, Kungliga Sevenska Vetenskapsakademiens. Handlinger 24(4), 1 (1898)Google Scholar
  39. 39.
    Y.S. Ho, G. McKay, A comparison of Chemiabsorption kinetic models applied to pollutant removal on various sorbents. Trans. IChemE 76(B), 332 (1998)CrossRefGoogle Scholar
  40. 40.
    Y.C. Sharma, G.S. Gupta, G. Prasad, D.C. Rupainwar, Use of Wollastoneite in the removal of Ni(II) from aqueous solutions. Water Air Soil Pollut. 49, 69 (1990)CrossRefGoogle Scholar
  41. 41.
    N.A. Rashidi, S. Yusup, L.H. Loong, Kinetic studies on carbon dioxide capture using activated carbon. Chem. Eng. Trans. 35, 361 (2013)Google Scholar
  42. 42.
    A. Dabrowski, Adsorption – from theory to practice. Adv. Colloid Interf. Sci. 93, 135 (2001)CrossRefGoogle Scholar
  43. 43.
    M. Inagaki, New Carbons: Control of Structure and Functions (Elsevier, Amsterdam, 2000)Google Scholar
  44. 44.
    T. D. Burchell (ed.), Carbon Materials for Advanced Technology (Oxford, London, 1999)Google Scholar
  45. 45.
    J. W. Patrick (ed.), Porosity in Carbon (Edward Arnold, London, 1995)Google Scholar
  46. 46.
    P.A. Thrower (eds.), Chemistry and Physics of Carbon, Marcel Dekker, NY (1989) and zeolites Zeolites: Facts, Figures, and Future: Proceedings of 8th International Conference Amsterdam, The Netherlands, (July 1989),Google Scholar
  47. 47.
    H. Chon, S. I. Woo, S.-E. Park (eds.), Recent Advances and New Horizons in Zeolite Science and Technology (Elsevier, Amsterdam, 1996)Google Scholar
  48. 48.
    E. Vilaplana-Ortego, J. Alica-iz Monge, D. Cazoria-Amors, A. Linares-Solano, Effect of stabilization time of pitch fibres on the molecular sieve properties of carbon fibres. Microporous Mesoporous Mater. 109, 21 (2008)CrossRefGoogle Scholar
  49. 49.
    M.A. Ahmed, W.M.A. Wan Daud, M.K. Aroua, Adsorption Kinetics of Various Gases in Carbon Molecular Sieves (CMS) Produced from Palm Shell. Colloids Surf., A, Physicochem. Eng. Asp 312, 131 (2008)CrossRefGoogle Scholar
  50. 50.
    S.J. Son et al., Development of carbon dioxide adsorbent using carbon materials prepared from coconut shell. Korean J. Chem. Eng. 22, 291 (2005)CrossRefGoogle Scholar
  51. 51.
    E. Davida, A. Talaie, V. Stanciu, A.C. Nicolae, Synthesis of carbon molecular sieves by benzene pyrolysis over microporous carbon materials. J. Matter. Process. Technol. 157, 290 (2004)CrossRefGoogle Scholar
  52. 52.
    T. Zhang, W.P. Walawender, L.T. Fan, Preparation of carbon molecular sieves by carbon deposition from methanol. Bioresour. Technol. 96, 1929 (2005)CrossRefGoogle Scholar
  53. 53.
    M. Kiyonb, Carbon Molecular Sieve Membranes for Natural Gas Separation, Ph.D. Thesis, Georgia Tech, Georgia, Atlanta, (2010)Google Scholar
  54. 54.
    A. Aworn et al., Preparation nad characterization of agricultural waste activated carbon by physical activation having micro and mesopores. J. Anal. and Appl. Pyrolysis 82(2), 279 (2008)CrossRefGoogle Scholar
  55. 55.
    D.C.S. Azevedo et al., Microporous activated carbon prepared from coconut shells using chemical activation with ZnCl2, Microporous and Mesoporous Materials, 100 (1–3), 361 (2007)Google Scholar
  56. 56.
    K.S.W. Sing, Adsorption methods for the characterization of porous materials. Adv. Colld. Interf. Sci. 76, 3 (1998)CrossRefGoogle Scholar
  57. 57.
    T.O. Hu, Characterization of Lignocellulosic Materials (John Wiley, NJ, 2008)CrossRefGoogle Scholar
  58. 58.
    L.A. Lucia, Lignocellulosic biomass: a potential feedstock to replace petroleum. BioResources 3(4), 981 (2008)Google Scholar
  59. 59.
    A.Tolbert et al., Characterization and analysis of the molecular weight of lignin for biorefining studies, Biofpr, Soc. Chem Ind., John Wiley, NJ., (2014)Google Scholar
  60. 60.
    N.D. Bonawitz et al., Disruption of mediator rescues the stunted of a lignin deficient Arabidopsismutant. Nature 509, 376 (2014)CrossRefGoogle Scholar
  61. 61.
    T.K. Gupta, Effect of temperature on electrical conduction of carbon –black filled polyimide. IEEE Trans on Comp. Pack. And Manuf 12(4), 696 (1989.) and also J. Ou, L. Yang and X. Xi, Nitrogen Rich Porous Carbon Anode with High Performance for Sodium Ion Batteries. 10, 1007 (2016)Google Scholar
  62. 62.
    K. Schaeffer, R. Potwora, Advantage of Coconut Shell Versus Bituminus Coal Activated Carbon, Water Conditioning and Purification, June 2008Google Scholar
  63. 63.
    S. Philippe, J.L. Figueiredo, Carbon Materials for Catalysis (Wiley, New Jersey, 2009.) and also L. Zhang, Y. Liu, S. Wang, B. Liu and J. Peng, The removal of Sodium Dodecyl Benzene Sulfonate by Activated Carbon Modified with Quaternary Amonium from Aqueous Solution. 10, 1007 (2016)Google Scholar
  64. 64.
    S. Hu, Y.L. Hsieh, Ultrafine microporus and mesoporous activated carbon fibers from Alkai lignin. J. Matter. Chem. A 1, 11279 (2013)CrossRefGoogle Scholar
  65. 65.
    M. Molina-Sabio, M.T. Gonzalez, F. Rodriguez-Reinoso, A. Sepulveda-Escribeno, Effect of steal and carbon dioxide activation in the macropore distribution of activated carbon. Carbon 34(4), 505 (1996)CrossRefGoogle Scholar
  66. 66.
    R.H. Bradley, I. Sutherland, E. Sheng, Carbon surface: area, porosity, chemistry, and energy. J. Colloid and Int. Sci 179(2), 561 (1996)CrossRefGoogle Scholar
  67. 67.
    L.J. Rolland, C. Sherman, The Food Encyclopedia: Over 8000 Ingredients, Tools, Techniques and People (Robert Rose Inc, Toronto, Canada, 2006), p. 148Google Scholar
  68. 68.
    M. Steam, Warts and All, Straight Talking Advice on Life’s Embarrassing Problems (Murdoch Books, London, 2007)Google Scholar
  69. 69.
    M. Michael et al., Phase II study of activated charcoal to prevent irinotecan –induced diarrhea. J. Clin.Oncol. 22(21), 4410 (2004)CrossRefGoogle Scholar
  70. 70.
    M. Thommes, Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 82(7), 1059 (2010)CrossRefGoogle Scholar
  71. 71.
    A. Debrowski (ed.), Adsorption and Its Applications in Industry and Environmental Protection, vol I (Elsevier, Amsterdam, 1999)Google Scholar
  72. 72.
    S.S. Shrotri, C.C. Harris, L. Haung, P. Somasundaran, A graphical technique for calculating adsorption/desorption isotherms for different solid/liquid ratios. Colloids Surf. A-141, 189 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tapan Gupta
    • 1
  1. 1.La MesaUSA

Personalised recommendations