Carbon pp 299-319 | Cite as


  • Tapan Gupta


The molecule buckminsterfullerene is beautiful physically and intellectually. Its qualities and even some of its properties can be appreciated instantly and intuitively by nonscientists. Its uniqueness is bound to lead to novel applications. Superconductivity is the leading consider at the moment. The commercial potential of buckminsterfullerene has heightened the excitement and controversy in recent years, while the exact nature of the discovery process in 1985 has been the subject of a heated feud between the British and American scientists involved [1].


  1. 1.
    H. Aldersey-Williams, The Most Beautiful Molecule: The Discovery of the Buckyball (Wiley, New York, 1995)Google Scholar
  2. 2.
    E. Osawa, The original conjecture of a stable C60 molecule. Chem. Abstr. 74, 75698v (1971)Google Scholar
  3. 3.
    D.A. Bochvar, E.G. Gal’pern, Electronic structure of C20 and C60. Proc. Acad. Sci. USSR 209, 239 (1973)Google Scholar
  4. 4.
    L. Pauling, The Nature of Chemical Bond, 3rd edn. (Oxford University Press, London, 1960), p. 111Google Scholar
  5. 5.
    W. Kutzelnigg, Orthogonal and non-orthogonal hybrids. J. Mol. Struct. THEOCHEM 169, 403 (1988)CrossRefGoogle Scholar
  6. 6.
    H. W. Kroto, J. E. Fischer, D. E. Cox (eds.), The Fullerene (Pergamon Press, Oxford, London, 1993)Google Scholar
  7. 7.
    W. Andreoni, The Physics of Fullerene-Based and Fullerene Related Materials (Springer, Heidelberg, 2000), p. 24CrossRefMATHGoogle Scholar
  8. 8.
    W. Kratschmer, K. Fostiropoulos, D.R. Huffman, The success in synthesis of macroscopic quantities of C60. Chem. Phys. Lett. 170, 167 (1990)CrossRefGoogle Scholar
  9. 9.
    D.V. Afanas’ev et al., Fullerene creation in arc discharge. J. Tech. Phys. 64(10), 76 (1994)Google Scholar
  10. 10.
    T.W. Ebbesen, J. Tabuchi, K. Tanigaki, The mechanics of fullerene formation. Chem. Phys. Lett. 191, 336 (1992)CrossRefGoogle Scholar
  11. 11.
    G.N. Churilov, Synthesis of fullerenes and other nanomaterials in arc discharge. Fullerenes Nanotubes Carbon Nanostruct 16, 395 (2008)CrossRefGoogle Scholar
  12. 12.
    H.W. Krot, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Lett. Nature 318, 162 (1985)CrossRefGoogle Scholar
  13. 13.
    C.M. Lieber, C.-C. Chen, Preparation of Fullerenes and Fullerene-Based Materials, Solid state physics, vol 48 (Academic, New York, 1994), pp. 109–148Google Scholar
  14. 14.
    H. Kroto, Space, stars, C60, and soot. Science 242, 1139 (1988)CrossRefGoogle Scholar
  15. 15.
    R.E. Haufler, Y. Chai, L.P.F. Chibante, J. Conceicao, C. Jin, L.S. Wang, S. Maruyama, R.E. Smalley, Carbon arc generation of C60. Mater. Res. Soc. Symp. Proc. 206, 627 (1991)CrossRefGoogle Scholar
  16. 16.
    C.-C. Chen, C.M. Lieber, Synthesis of pure 13C60 and determination of the isotope effect for fullerene superconductors. J. Am. Chem. Soc. 114, 3141 (1992)CrossRefGoogle Scholar
  17. 17.
    I. Lamparth, A. Hirsch, Water soluble melonic acid derivatives of C60 with a defined three-dimensional structure. J. Chem. Soc. Chem. Commun. 116, 1727 (1994)CrossRefGoogle Scholar
  18. 18.
    A.L. Ortiz-Hernandez, Design and regioselective synthesis of two and three pronged C60 fullerene derivatives and their applications in molecular electronics, Ph.D. Dissertation, Clemson University, South Carolina, 2010Google Scholar
  19. 19.
    R. Kessinger et al., Preparation of Enantiometrically pure C76 with a general electrochemical method for the removable of Di (alkoxycarbonyl) methano bridges from methanofullerene the reto-Bingel reaction. Angew. Chem. Int. Ed. 37, 1919 (1998)CrossRefGoogle Scholar
  20. 20.
    R. Kessinger et al., Walk on the sphere: electrochemically induced isomerization of C60 Bis-adducts by migration of Di (alkoxycarbonyl) methano bridges. J. Am. Chem. Soc. 120, 8545 (1998)CrossRefGoogle Scholar
  21. 21.
    F. Diederich, R. Kessinger, Templated regioselective and stereoselective synthesis in fullerene chemistry. Acc. Chem. Res 32(6), 537 (1999)CrossRefGoogle Scholar
  22. 22.
    S. Fukuzumi, F. D’Souza, D. M. Guldi (eds.), Fullerenes 2000, vol 8 (Electrochemical Society, Pennington, 2000)Google Scholar
  23. 23.
    O. Lukoyanova, Studies of the stability and potential applications of pyrrolidinofullerenes and ather fullerene derivatives, Ph.D. Thesis, Clemson University, Clemson, SC, USA 2007Google Scholar
  24. 24.
    S. Zhang, O. Lukoyanova, I. Echegoyen, Synthesis of fullerene adducts with terpyridyl groups in trans-1 positions. Chem. Eur. J. Org. Chem., 12, 3396 (2009)Google Scholar
  25. 25.
    P. Hebgen, A. Goel, J.B. Howard, L.C. Rainey, J.B. Vander Sande, Synthesis of fullerenes and fullerenic nanostructures in a low-pressure benzene/oxygen diffusion flame. Proc. Combust. Inst. 28, 1397 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Sathish, K. Mityazawa, Synthesis and characterization of fullerenes Nanowhiskers by liquid-liquid interfacial precipitation: Influence of C60 solubility. Molecules 17, 3858 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Ceolin et al., Solid state studies of the C60. 2 (CH3)CCl3 solvate. Carbon 43, 417 (2005)CrossRefGoogle Scholar
  28. 28.
    T. Nakanishi, W. Schmitt, T. Michinobu, D.G. Kurth, K. Ariga, Hierarchical supramolecular fullerene architectures with controlled dimensionality. Chem. Commun., 47, 5892 (2005)Google Scholar
  29. 29.
    J.B. Howard, K. Das Chowdhuri, J.B. Vander Sande, Carbon shells in flame. Nature 370, 603 (1994)CrossRefGoogle Scholar
  30. 30.
    J.B. Howard, J.T. McKinnon, Y. Markarovsky, A.L. Lafleur, M.E. Johnson, Fullerenes C60 and C70 in flames. Nature 352, 139 (1991)CrossRefGoogle Scholar
  31. 31.
    J.B. Howard et al., Fullerenes synthesis in combustion, Carbon. 30, 1183 (1992) + P.W. Stephens, Physics and Chemistry of Fullerenes (World Scientific, River Edge, 1993)Google Scholar
  32. 32.
    Z.A. Mansurov, Soot formation combustion process, (review). Combust. Explot. Shock Waves 41(6), 727 (2005)CrossRefGoogle Scholar
  33. 33.
    K.C. Khemani, M. Prato, F. Wudl, A simple Soxhelt chromatographic method for the isolation of pure fullerenes C60 and C70. J. Org. Chem. 57, 3254 (1992)CrossRefGoogle Scholar
  34. 34.
    M.S. Amer, Raman-Spectroscopy and Nanotechnology (Royal Society Chemistry, London, 2010)Google Scholar
  35. 35.
    C. Thilgen, F. Diederich, R.L. Whetten, Buckministerfullerene, 1993, 59, in Fullerenes, Chemistry and Reactions, ed. by A. Hersch, M. Brettreich (Wiley, Weinheim, 2010)Google Scholar
  36. 36.
    M. Diack, R.L. Hettich, R.N. Compton, G. Guiochon, Contribution to the isolation and characterization of buckminsterfullerenes. Anal. Chem. 64, 2143 (1992)CrossRefGoogle Scholar
  37. 37.
    J. Abrefah, D.R. Olander, M. Balooch, W.J. Siekhaus, Vapor pressure of buckminsterfullerene. Appl. Phys. Lett. 60, 1313 (1991)CrossRefGoogle Scholar
  38. 38.
    C. Pan, M.P. Sampson, Y. Chai, R.H. Hauge, J.L. Margrave, Heats of sublimation from a polycrystalline mixture of carbon clusters (C60 and C70). J. Phys. Chem. 95, 2944 (1991)CrossRefGoogle Scholar
  39. 39.
    F. Diederich et al., The higher fullerenes isolation and characterization of C76, C84, C90, C94 and C70O an oxide of D5h-C70. Science 252, 548 (1991)CrossRefGoogle Scholar
  40. 40.
    P. Bhyrappa, A. Penicaud, M. Kawamoto, C.A. Reed, Improved chromatographic separation and purification of C60 and C70 fullerenes. J. Chem. Soc. Chem. Commun. 13, 936 (1992)CrossRefGoogle Scholar
  41. 41.
    W.A. Scrivens, P.V. Bedworth, J.M. Tour, Purification of gram quantities of C60. A new inexpansive and facile method. J. Am. Chem. Soc. 114, 7917 (1992)CrossRefGoogle Scholar
  42. 42.
    N. Manova et al., Separation of C60/C70 mixture on activated carbon and activated carbon fibers. Carbon 33(2), 209 (1994)CrossRefGoogle Scholar
  43. 43.
    X.R. Xia, N. Monteiro-Riviere, J. Riviere, Trace analysis of fullerenes in biological samples by simplified liquid liquid extraction and high performance liquid chromatography. J. Chromatogr. A 1129, 216 (2006)CrossRefGoogle Scholar
  44. 44.
    D. Bouchard, X. Ma, Extraction of high performance liquid chromatographic analysis of C60, C70, and [6,6]-penyl C61-butyric acid methyl ester in systematic and natural waters. J. Chromatogr. A 1203(2), 153 (2008)CrossRefGoogle Scholar
  45. 45.
    P. Orea, Phase diagrams of model C60 and C70 fullerenes from short-range attractive potentials. J. Chem. Phys. 130, 104703 (2009)CrossRefGoogle Scholar
  46. 46.
    L.A. Girifalco, Molecular properties of fullerene in the gas and solid phase. J. Phys. Chem. 95, 868 (1992)Google Scholar
  47. 47.
    Kaminsky, M. Budesinsky, S. Taubert, P. Bour, M. Straka, Fullerene C70 characterization by 13C NMR and the importance of the solvent and dynamics in spectral simulation. Phys. Chem. Chem. Phys. 15, 9223 (2013)CrossRefGoogle Scholar
  48. 48.
    R. Taylor, J.P. Hare, A.K. Abdul-sada, H.W. Kroto, Isolation, separation, and characteristics of the fullerene C60, C70, the third form of carbon. J. Chem. Soc. Chem. Commun., 20, 1423 (1990)Google Scholar
  49. 49.
    G. Sun, M. Kertesz, Theoretical 13NMR spectra of IPR isomers of fullerenes C60, C70, C72, C74, C76, and C78 studied by density functional theory. J. Phys. Chem. A 104(31), 7398 (2000)CrossRefGoogle Scholar
  50. 50.
    R.D. Johnson, G. Meijer, J.R. Salem, D.S. Bethune, 2D nuclear magnetic resonance study of the structure of the fullerene C70. J. Am. Chem. Soc. 113, 3619 (1991)CrossRefGoogle Scholar
  51. 51.
    D.O. Sparkman, Mass Spectrometry Desk Reference (Global View, Pittsburgh, 2000)Google Scholar
  52. 52.
    R.E. Smalley, The great balls of carbon—the buckminsterfullerene. Sciences 31, 22 (1991)CrossRefGoogle Scholar
  53. 53.
    H.W. Kroto, A.W. Allaf, S.P. Balm, C60, buckminsterfullerene. Chem. Rev. 91, 1213 (1991)CrossRefGoogle Scholar
  54. 54.
    S.W. McElvany, M.M. Ross, Mass spectrometry and fullerenes. J. Am. Soc. Mass Spectrom. 3, 268 (1992)CrossRefGoogle Scholar
  55. 55.
    L.A. Bloomfield, M.E. Geusic, R.R. Freeman, W.L. Brown, Negative and positive cluster ions of carbon. Chem. Phys. Lett. 121, 33 (1985)CrossRefGoogle Scholar
  56. 56.
    S.C. O’Brien, J.R. Heath, R.F. Curl, R.E. Stanley, Buckminsterfullerene and other carbon cluster ions. J. Chem. Phys. 88, 220 (1998)CrossRefGoogle Scholar
  57. 57.
    S.W. McElvany, M.M. Ross, J.H. Callahan, Characterization of fullerenes by mass spectrometry. Acc. Chem. Res. 25, 162 (1992)CrossRefGoogle Scholar
  58. 58.
    Z. Dai, H. Naramoto, K. Narumi, S. Yamamoto, A. Miyashita, A three step process for epitaxial growth of (111) oriented C60 films on alkali halide substrates. Thin Solid Films 360, 28 (2000)CrossRefGoogle Scholar
  59. 59.
    H. Takashima, M. Nakaya, A. Yamamoto, A. Hashimoto, Solid C60 growth on hexagonal GaN (0001) surface. J. Cryst. Growth 227, 829 (2001)CrossRefGoogle Scholar
  60. 60.
    V.L. Cebola, L. Membrado, J. Vela, Fullerenes: liquid chromatography, in Analytical Supercritical Fluid Chromatography and Extraction, ed. by M. L. Lee, K. E. Markides (Academic, San Diego, 2000), p. 2901Google Scholar
  61. 61.
    J. Theobald, M. Perrut, J.V. Weber, E. Millon, J.F. Muller, Extraction and purification of fullerenes: a comprehensive review. Sep. Sci. Technol 30(14), 2783 (1995)CrossRefGoogle Scholar
  62. 62.
    E.A. Katz, Chapt-13, in Nanostructured Materials for Solar Energy Conversion, ed. by T. Soga (Elsevier, Amsterdam, 2006), p. 377Google Scholar
  63. 63.
    W. Zhou, S-hen Xie, S-fa Oian, G. Wang, L-xi Qian, Photothermal deflection spectra of solid C60, J. Phys. Condens. Matter 8, 5793 (1996) and also S. Saito, A. Oshiyama, Phys. Rev. Lett. 186, 281 (1991)Google Scholar
  64. 64.
    M.B. Jost et al., Inverse photoemission and theory. Phys. Rev. B 44, 1966 (1991)CrossRefGoogle Scholar
  65. 65.
    R.W. Lof et al., Bandgap, excitons, and Columb interaction in solid C60. Phys. Rev. Lett. 68, 3924 (1992)CrossRefGoogle Scholar
  66. 66.
    D.W. Snoke, K. Syassen, A. Mittelbach, Optical absorption of C60 at high pressure. Phys. Rev. B 47(7), 4146 (1993)CrossRefGoogle Scholar
  67. 67.
    T. Pradeep, A glimpse into fascinating world of fullerenes. Curr. Sci 72(2), 124 (1997)Google Scholar
  68. 68.
    J. Shinar, Z.V. Vardeny, Z.H. Kafafi, Optical & Electronic Properties of Fullerenes and Fullerene-Based Materials (Mercel Dekker AG, New York, 2000)Google Scholar
  69. 69.
    D.A. Neumann et al., Coherent quasielastic neutron scattering study of rotational dynamics of C60 in orientationally disordered phase. Phys. Rev. Lett. 67, 3808 (1991)CrossRefGoogle Scholar
  70. 70.
    J.E. Fischer, P.A. Heiney, A.B. Smith, Solid state chemistry of fullerene-based materials. Acc. Chem. Res. 25, 115 (1992)CrossRefGoogle Scholar
  71. 71.
    C.M. Lieber, Z. Zhang, Physical properties of meta-doped fullerene superconductors. Solid State Phys. 48, 349 (1994)CrossRefGoogle Scholar
  72. 72.
    R.C. Haddon et al., Conducting films of C60 and C70 by alkali metal doping. Nature 350, 320 (1991)CrossRefGoogle Scholar
  73. 73.
    A.F. Habard et al., Superconductivity at 18K in potasium doped C60. Nature 350, 600 (1991)CrossRefGoogle Scholar
  74. 74.
    S.P. Kelty, C.C. Chen, C.M. Lieber, Superconductivity at 30K in cesium doped C60. Nature 352, 223 (1991)CrossRefGoogle Scholar
  75. 75.
    M. Akada et al., Superconductivity appearing from C60 doped with rare earth metals. Sci. Technol. Adv. Mater. 7, S83 (2006)CrossRefGoogle Scholar
  76. 76.
    X.H. Chen, G. Roth, Superconductivity in samarium doped C60. Phys. Rev. B. Condens. Matter 52(21), 15534 (1995)CrossRefGoogle Scholar
  77. 77.
    A. Takeda et al., Superconductivity of Doped Ar C60, Chem. Commun., 912, Royal Society of Chemistry, London, (2006)Google Scholar
  78. 78.
    M. Carini, L. Dordevic, T. Da Ros, Fullerene in Biology and Medicine, Chapt-1, Vol-3, in Handbook of Carbon Nano Materials, (World Scientific, Singapore, 2015)Google Scholar
  79. 79.
    V.M. Torres et al., Fullerene C60 (OH)24 prevents doxorubicin induced accute cadiotoxicity in rats. Pharmacol. Rep. 62, 707 (2010)CrossRefGoogle Scholar
  80. 80.
    R. Bernstein, F. Prat, C.S. Foote, On the mechanism of DNA cleavage by fullerenes: Electron transfer from guanosine and 8 Oxo-guanocine to C60. J. Am. Chem. Soc. 121, 464 (1999)CrossRefGoogle Scholar
  81. 81.
    Y. Lin, Y. Li, X. Zen, Small molecule semiconductors for high efficiency organic photovoltaics. Chem. Soc. Rev. 41, 4245 (2012)CrossRefGoogle Scholar
  82. 82.
    N. Martin, F. Giacalone (eds.) Fullerene Polymers, Synthesis, Properties, and Applications (Wiley, Weinheim, 2010) and also,vol.14.pdf
  83. 83.
    C. R. Newman et al., Introduction to organic thin film transistors and design of n-channel semiconductors, Chem. Mater. 16(23), 4436 (2004) and also C. Brabec, V. Dyakonov, U. scherf, Organic Phovoltaics (Wiley, Germany, 2008)Google Scholar
  84. 84.
    J. Luis Delgado et al., Organic photovoltaics a chemical approach. J. Chem. Soc. Chem. Commun. R.S.C. 46, 4853 (2010)CrossRefGoogle Scholar
  85. 85.
    M. Paterno et al., Micro focussed X-ray diffraction characterization of high quality [6,6]-phenyl-C61-butyric acid methyl ester single crystals without solvent impurities. J. Mater. Chem. C1, 5619 (2013)Google Scholar
  86. 86.
    N. Li et al., Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8, 14541 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tapan Gupta
    • 1
  1. 1.La MesaUSA

Personalised recommendations