Skip to main content

A Set of Sequences of Complexity \(2n+1\)

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10432))

Included in the following conference series:

Abstract

We prove the existence of a ternary sequence of factor complexity \(2n+1\) for any given vector of rationally independent letter frequencies. Such sequences are constructed from an infinite product of two substitutions according to a particular Multidimensional Continued Fraction algorithm. We show that this algorithm is conjugate to a well-known one, the Selmer algorithm. Experimentations (Baldwin, 1992) suggest that their second Lyapunov exponent is negative which presages finite balance properties.

J. Leroy—FNRS post-doctoral fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnoux, P., Labbé, S.: On some symmetric multidimensional continued fraction algorithms. Ergodic Theor. Dyn. Syst., 1–26 (2017). doi:10.1017/etds.2016.112

  2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité \(2n+1\). Bull. Soc. Math. France 119(2), 199–215 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnoux, P., Starosta, Š.: The Rauzy gasket. In: Barral, J., Seuret, S. (eds.) Further Developments in Fractals and Related Fields, pp. 1–23. Birkhäuser/Springer, New York (2013). doi:10.1007/978-0-8176-8400-6_1, Trends in Mathematics

  4. Baldwin, P.R.: A convergence exponent for multidimensional continued-fraction algorithms. J. Stat. Phys. 66(5–6), 1507–1526 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berthé, V., Labbé, S.: Factor complexity of \(S\)-adic words generated by the Arnoux-Rauzy-Poincaré algorithm. Adv. Appl. Math. 63, 90–130 (2015). doi:10.1016/j.aam.2014.11.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, R.G.: Acyclic, connected and tree sets. Monatsh. Math. 176(4), 521–550 (2015). doi:10.1007/s00605-014-0721-4

  7. Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: \(S\)-adic expansions. In: Numeration and Substitution 2012, pp. 81–123 (2014). RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto

    Google Scholar 

  8. Brentjes, A.J.: Multidimensional Continued Fraction Algorithms. Mathematisch Centrum, Amsterdam (1981)

    MATH  Google Scholar 

  9. Cassaigne, J.: Un algorithme de fractions continues de complexité linéaire, DynA3S meeting, LIAFA, Paris, 12th October 2015. http://www.irif.fr/dyna3s/Oct2015

  10. Delecroix, V., Hejda, T., Steiner, W.: Balancedness of Arnoux-Rauzy and Brun words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 119–131. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40579-2_14

    Chapter  Google Scholar 

  11. Labbé, S.: 3-dimensional Continued Fraction Algorithms Cheat Sheets, November 2015. http://arxiv.org/abs/arxiv:1511.08399

  12. Leroy, J.: An \(S\)-adic characterization of minimal subshifts with first difference of complexity \(1\le p(n+1)-p(n)\le 2\). Discrete Math. Theor. Comput. Sci. 16(1), 233–286 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Schweiger, F.: Multidimensional Continued Fractions. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  14. Zorich, A.: Deviation for interval exchange transformations. Ergodic Theor. Dyn. Syst. 17(6), 1477–1499 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are thankful to Valérie Berthé for her enthusiasm toward this project and for the referees for their thorough reading and pertinent suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Labbé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cassaigne, J., Labbé, S., Leroy, J. (2017). A Set of Sequences of Complexity \(2n+1\) . In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme, É. (eds) Combinatorics on Words. WORDS 2017. Lecture Notes in Computer Science(), vol 10432. Springer, Cham. https://doi.org/10.1007/978-3-319-66396-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66396-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66395-1

  • Online ISBN: 978-3-319-66396-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics