Skip to main content

Towards a Paraconsistent Approach to Actions in Distributed Information-Rich Environments

  • Chapter
  • First Online:
Intelligent Distributed Computing XI (IDC 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 737))

Included in the following conference series:

Abstract

The paper introduces ActLog, a rule-based language capable of specifying actions paraconsistently. ActLog is an extension of 4QL\(^{\!\text{ Bel }}\), a rule-based language for reasoning with paraconsistent and paracomplete belief bases and belief structures. Actions considered in the paper act on belief bases rather than states represented as sets of ground literals. Each belief base stores multiple world representations which can be though of as a representation of possible states. In this context ActLog’s action may be then seen as a method of transforming one belief base into another. In contrast to other approaches, ActLog permits to execute actions even if the underlying belief base state is partial or inconsistent. Finally, the framework introduced in this paper is tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Acyclicity of references among modules is required (needed for tractability of computing queries).

References

  1. Bertossi, L., Hunter, A., Schaub, T.: Introduction to inconsistency tolerance. Bertossi et al. [2], pp. 1–14

    Google Scholar 

  2. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance, LNCS, vol. 3300. Springer (2005)

    Google Scholar 

  3. Białek Ł., Dunin-Kęplicz, B., Szałas, A.: Rule-based reasoning with belief structures. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybiński, H., Skowron, A., Raś, Z. (eds.) Foundations of Intelligent Systems, Proceedings of ISMIS Conference. LNAI, vol. 10352, pp. 229–239. Springer (2017)

    Google Scholar 

  4. Doherty, P., Szałas, A.: Stability, supportedness, minimality and Kleene answer set programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation, LNCS, vol. 9060, pp. 125–140. Springer International Publishing (2015)

    Google Scholar 

  5. Dunin-Kęplicz, B., Szałas, A.: Epistemic profiles and belief structures. In: Proceedings KES-AMSTA 2012: Agents and Multi-agent Systems: Technologies and Applications. LNCS, vol. 7327, pp. 360–369. Springer (2012)

    Google Scholar 

  6. Dunin-Kęplicz, B., Szałas, A.: Taming complex beliefs. Trans. Comput. Collect. Intel. XI LNCS 8065, 1–21 (2013)

    Google Scholar 

  7. Dunin-Kęplicz, B., Szałas, A.: Indeterministic belief structures. In: Jezic, G., Kusek, M., Lovrek, I., J. Howlett, Lakhmi, J. (eds.) Agent and Multi-Agent Systems: Technologies and Applications: Proceedings 8th International Conference KES-AMSTA, pp. 57–66. Springer (2014)

    Google Scholar 

  8. Dunin-Kęplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems. A Formal Approach. Wiley (2010)

    Google Scholar 

  9. Dunin-Kęplicz, B., Verbrugge, R., Ślizak, M.: Teamlog in action: a case study in teamwork. Comput. Sci. Inf. Syst. 7(3), 569–595 (2010)

    Google Scholar 

  10. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under incomplete knowledge. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira, L., Sagiv, Y., Stuckey, P. (eds.) Proceedings Computational Logic: 1st International Conference, pp. 807–821. Springer (2000)

    Google Scholar 

  11. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The MIT Press (2003)

    Google Scholar 

  12. Ferraris, P., Lifschitz, V.: On the minimality of stable models. In: Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 64–73. Springer (2011)

    Google Scholar 

  13. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to problem solving. In: Proceedings of the 2nd International Joint Conference on Artificial Intelligence, pp. 608–620. IJCAI’71, Morgan Kaufmann Publishers Inc. (1971)

    Google Scholar 

  14. Hewitt, C.: Formalizing common sense for scalable inconsistency-robust information integration using direct logic reasoning and the actor model. arXiv:0812.4852 (2008)

  15. Hewitt, C., Woods, J. (eds.): Inconsistency Robustness. College Publications (2015)

    Google Scholar 

  16. Małuszyński, J., Szałas, A.: Living with inconsistency and taming nonmonotonicity. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0. LNCS, vol. 6702, pp. 384–398. Springer (2011)

    Google Scholar 

  17. Małuszyński, J., Szałas, A.: Logical foundations and complexity of 4QL, a query language with unrestricted negation. J. Appl. Non-Classical Logics 21(2), 211–232 (2011)

    Google Scholar 

  18. Małuszyński, J., Szałas, A.: Partiality and inconsistency in agents’ belief bases. In: Barbucha, D., Le, M., Howlett, R., Jain, L. (eds.) KES-AMSTA. Frontiers in Artificial Intelligence and Applications, vol. 252, pp. 3–17. IOS Press (2013)

    Google Scholar 

  19. Mueller, E.: Commonsense Reasoning. Morgan Kaufmann (2006)

    Google Scholar 

  20. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and deductive databases. J. Autom. Reason. 13(1), 145–172 (1994)

    Google Scholar 

  21. Shieber, S.M.: Solving problems in an uncertain world. Bachelor’s Thesis, Harvard College (1981)

    Google Scholar 

  22. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) Proceedings PADL’99. LNCS, vol. 1551, pp. 305–319. Springer (1999)

    Google Scholar 

  23. Szałas, A.: How an agent might think. Logic J. IGPL 21(3), 515–535 (2013)

    Google Scholar 

  24. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press (2005)

    Google Scholar 

  25. Zadeh, L.: Fuzzy sets. Inf. Control 8, 333–353 (1965)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Polish National Science Centre grant 2015/19/B/ST6/02589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Szałas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Białek, Ł., Dunin-Kęplicz, B., Szałas, A. (2018). Towards a Paraconsistent Approach to Actions in Distributed Information-Rich Environments. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M. (eds) Intelligent Distributed Computing XI. IDC 2017. Studies in Computational Intelligence, vol 737. Springer, Cham. https://doi.org/10.1007/978-3-319-66379-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66379-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66378-4

  • Online ISBN: 978-3-319-66379-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics