Skip to main content

Chlamydomonas: The Eyespot

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 30))

Abstract

Vision evolved in motile, single-celled, green algae to enhance photosynthetic capability. A specialized structure within the cell, the eyespot, aids in the detection of light direction and is key to improving the efficiency of phototactic behavior. The Chlamydomonas reinhardtii eyespot is the most well-studied photoreceptive structure guiding cellular movement. Crucial features required for function as a light-sensing organelle and signal transducer affecting swimming behavior are (1) a light-signal transduction cascade, i.e., photon capture, membrane depolarization, and flagellar waveform change; (2) a structure that allows discernment of light direction, i.e., the elaborate layered membrane organization of the eyespot; and (3) precise placement of the organelle relative to the flagella, required for coupling the space/time of light reception to the space/time of the flagellar response accurately. Here we summarize what is known about eyespot function, assembly and placement, and highlight the development of new tools and approaches that will aid in illuminating Chlamydomonas eyespot structure and function.

Experimental work in the Dieckmann lab was supported by NSF award MCB-1157795 (M.T., T.M. and C.D.) and NIH award T32 GM008659 (M.T.).

This is a preview of subscription content, log in via an institution.

References

  • Awasthi M, Ranjan P, Sharma K, Veetil SK, Kateriya S (2016) The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci Rep 6:37096

    Article  Google Scholar 

  • Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd JS, Gray MM, Thompson MD, Horst CJ, Dieckmann C (2011a) The daughter four-membered microtubule rootlet determines anterior-posterior positioning of the eyespot in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 68:459–469

    Google Scholar 

  • Boyd JS, Mittelmeier TM, Lamb MR, Dieckmann C (2011b) Thioredoxin-family protein EYE2 and Ser/Thr kinase EYE3 play interdependent roles in eyespot assembly. Mol Biol Cell 22:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79

    Article  CAS  PubMed  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation--the same or not the same? Mol Plant 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • Deininger W, Kroger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do TQ, Hsu AY, Jonassen T, Lee PT, Clarke CF (2001) A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J Biol Chem 276:18161–18168

    Article  CAS  PubMed  Google Scholar 

  • Dutcher SK, Trabuco EC (1998) The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol Biol Cell 9:1293–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eitzinger N, Wagner V, Weisheit W, Geimer S, Boness D, Kreimer G, Mittag M (2015) Proteomic analysis of a fraction with intact eyespots of Chlamydomonas reinhardtii and assignment of protein methylation. Front Plant Sci 6:1085

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4:3583

    Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44:572–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    CAS  PubMed  Google Scholar 

  • Geimer S, Melkonian M (2005) Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot Cell 4:1253–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Jung K-H, Sineshchekov OA, Spudich JL (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86:2342–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greeff C, Roux M, Mundy J, Petersen M (2012) Receptor-like kinase complexes in plant innate immunity. Front Plant Sci 3:1–7

    Google Scholar 

  • Gust AA (2015) Peptidoglycan perception in plants. PLoS Pathog 11:e1005275

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartshorne JN (1953) The function of the eyespot in Chlamydomonas. New Phytol 52:292–297

    Article  Google Scholar 

  • Harz H, Hegemann P (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489–491

    Article  CAS  Google Scholar 

  • Hegemann P (1997) Vision in microalgae. Planta 203:266–274

    Article  Google Scholar 

  • Holland EM, Braun FJ, Nonnengässer C, Harz H, Hegemann P (1996) The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. Biophys J 70:924–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94(Pt 2):273–285

    PubMed  Google Scholar 

  • Horst CJ, Witman GB (1993) ptx1, a nonphototactic mutant of Chlamydomonas, lacks control of flagellar dominance. J Cell Biol 120:733–741

    Article  CAS  PubMed  Google Scholar 

  • Horst CJ, Fishkind DJ, Pazour GJ, Witman GB (1999) An insertional mutant of Chlamydomonas reinhardtii with defective microtubule positioning. Cell Motil Cytoskeleton 44:143–154

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Ramanis Z, Dutcher SK, Luck DJ (1982) Uniflagellar mutants of Chlamydomonas: evidence for the role of basal bodies in transmission of positional information. Cell 29:745–753

    Article  CAS  PubMed  Google Scholar 

  • Kamiya R, Witman G (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol 98:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kateriya S, Nagel G, Bamberg E, Hegemann P (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  • King SJ, Dutcher SK (1997) Phosphoregulation of an inner dynein arm complex in Chlamydomonas reinhardtii is altered in phototactic mutant strains. J Cell Biol 136:177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivic PA, Walne PL (1983) Algal photosensory apparatus probably represent multiple parallel evolutions. Biosystems 16:31–38

    Article  CAS  PubMed  Google Scholar 

  • Kreimer G (1994) Cell biology of phototaxis in flagellate algae. Int Rev Cytol 148:229–310

    Article  Google Scholar 

  • Kreimer G (2009) The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43

    Article  CAS  PubMed  Google Scholar 

  • Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol 53:101–111

    CAS  PubMed  Google Scholar 

  • Lamb MR, Dutcher SK, Worley CK, Dieckmann C (1999) Eyespot-assembly mutants in Chlamydomonas reinhardtii. Genetics 153:721–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeDizet M, Piperno G (1986) Cytoplasmic microtubules containing acetylated alpha-tubulin in Chlamydomonas reinhardtii: spatial arrangement and properties. J Cell Biol 103:13–22

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC (2016) An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:367–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Dutcher SK (2015) Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 127:349–386

    Article  PubMed  Google Scholar 

  • Lohscheider JN, Friso G, van Wijk KJ (2016) Phosphorylation of plastoglobular proteins in Arabidopsis thaliana. J Exp Bot 67(13):3975–3984. doi:10.1093/jxb/erw091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JTM, Hildebrandt P, Hegemann P (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287:40083–40090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundquist PK, Davis JI, van Wijk KJ (2012) ABC1K atypical kinases in plants: filling the organellar kinase void. Trends Plant Sci 17:546–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Watanabe S, Sakaushi S, Miyamura S, Hori T (2003) Screening effect diverts the swimming directions from diaphototactic to positive phototactic in a disk-shaped green flagellate Mesostigma viride. Photochem Photobiol 77:324–329

    Article  CAS  PubMed  Google Scholar 

  • Melkonian M, Robenek H (1980) Eyespot membranes of Chlamydomonas reinhardii: a freeze-fracture study. J Ultrastruct Res 72:90–102

    Article  CAS  PubMed  Google Scholar 

  • Mittelmeier TM, Berthold P, Danon A, Lamb MR, Levitan A, Rice ME, Dieckmann C (2008) C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas reinhardtii. Eukaryot Cell 7:2100–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelmeier TM, Dieckmann C, Boyd JS, Lamb MR (2011) Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization. J Cell Biol 193:741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelmeier TM, Thompson MD, Oztürk E, Dieckmann C (2013) Independent localization of plasma membrane and chloroplast components during eyespot assembly. Eukaryot Cell 12:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelmeier TM, Thompson MD, Lamb MR, Lin H, Dieckmann C (2015) MLT1 links cytoskeletal asymmetry to organelle placement in Chlamydomonas. Cytoskeleton 72:1–11

    Article  Google Scholar 

  • Morel-Laurens N, Feinleib ME (1983) Photomovement in an “eyeless” mutant of Chlamydomonas. Photochem Photobiol 37:189–194

    Article  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E (2005) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 33:863–866

    Article  CAS  PubMed  Google Scholar 

  • Nonnengässer C, Holland EM, Harz H, Hegemann P (1996) The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions. Biophys J 70:932–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K (2005) Phototactic activity in Chlamydomonas “non-phototactic” mutants deficient in Ca2+−dependent control of flagellar dominance or in inner-arm dynein. J Cell Sci 118:529–537

    Article  CAS  PubMed  Google Scholar 

  • Ozawa SI, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix JD, Takahashi Y (2009) Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. Plant Cell 21:2424–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piasecki BP, Silflow CD (2009) The UNI1 and UNI2 genes function in the transition of triplet to doublet microtubules between the centriole and cilium in Chlamydomonas. Mol Biol Cell 20:368–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plucinak TM, Horken KM, Jiang W, Fostvedt J, Nguyen ST, Weeks DP (2015) Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. Plant J 82:717–729

    Article  CAS  PubMed  Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33:543–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DG, Lamb MR, Dieckmann C (2001) Characterization of the EYE2 gene required for eyespot assembly in Chlamydomonas reinhardtii. Genetics 158:1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil Cytoskeleton 5:251–263

    Article  Google Scholar 

  • Rüffer U, Nultsch W (1987) Comparison of the beating of cis- and trans-flagella of Chlamydomonas cells held on micropipettes. Cell Motil Cytoskeleton 7:87–93

    Article  Google Scholar 

  • Rüffer U, Nultsch W (1997) Flagellar photoresponses of ptx1, a nonphototactic mutant of Chlamydomonas. Cell Motil Cytoskeleton 37:111–119

    Article  PubMed  Google Scholar 

  • Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze T, Schreiber S, Iliev D, Boesger J, Trippens J, Kreimer G, Mittag M (2013) The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot. Mol Plant 6:931–944

    Article  CAS  PubMed  Google Scholar 

  • Schuster G, Dewit M, Staehelin A, Ohad I (1986) Transient inactivation of the thylakoid photosystem II light-harvesting protein kinase system and concomitant changes in intramembrane particle size during photoinhibition of Chlamydomonas reinhardtii. J Cell Biol 103:71–80

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Govorunova EG (2001) Rhodopsin receptors of phototaxis in green flagellate algae. Biochemistry (Mosc) 66:1300–1310

    Article  CAS  Google Scholar 

  • Sineshchekov O, Jung K, Spudich J (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Spudich JL (2009) Photosensory functions of channelrhodopsins in native algal cells. Photochem Photobiol 85:556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G (2012) Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. Plant Cell 24:4687–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki N, Ide T, Mochiji S, Kobayashi Y, Tokutsu R, Ohnishi N, Yamaguchi K, Shigenobu S, Tanaka K, Minagawa J, Hisabori T, Hirono M, Wakabayashi K-I (2016) Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113:5299–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68:253–289

    Article  PubMed  Google Scholar 

  • Wakabayashi K, Misawa Y, Mochiji S, Kamiya R (2011) Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 108:11280–11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M, Kreimer G (2008) The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol 146:772–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wietek J, Prigge M (2016) Enhancing channelrhodopsins: an overview. Methods Mol Biol 1408:141–165

    Article  CAS  PubMed  Google Scholar 

  • Witman GB (1993) Chlamydomonas phototaxis. Trends Cell Biol 3:403–408

    Article  CAS  PubMed  Google Scholar 

  • Woessner JP, Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181:245–258

    Article  Google Scholar 

  • Xie LX, Hsieh EJ, Watanabe S, Allan CM, Chen JY, Tran UC, Clarke CF (2011) Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811:348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zones JM, Blaby IK, Merchant SS, Umen JG (2015) High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation. Plant Cell 27:2743–2769

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol L. Dieckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, M.D., Mittelmeier, T.M., Dieckmann, C.L. (2017). Chlamydomonas: The Eyespot. In: Hippler, M. (eds) Chlamydomonas: Molecular Genetics and Physiology. Microbiology Monographs, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-66365-4_9

Download citation

Publish with us

Policies and ethics