Skip to main content

Chlamydomonas: Cilia and Ciliopathies

  • Chapter
  • First Online:
  • 816 Accesses

Part of the book series: Microbiology Monographs ((MICROMONO,volume 31))

Abstract

Cilia and flagella are evolutionally conserved microtubule-based cellular protrusions that are present from organisms ranging from protozoan and algae to human. In the human body and embryo, motile cilia have been found in embryonic node, ventricles of the brain, respiratory ducts, fallopian tube, and sperm. Cilia motility provides cell movement, movement of fluids surrounding the ciliated cells and fluid-flow-generated signaling. Immotile primary cilia exist in almost every cell in the human body and during embryonic development. The presence of various receptors and ion channels on the ciliary membrane enables the cilia as a signaling center to perceive extracellular inputs. The signals generated will be transduced into the cell to control proper human development and physiology. A well-known example is that hedgehog signaling is indispensable for cilia in mammals. Thus, it is not surprising that defects in ciliary structure, assembly, and signaling have been linked with a cohort of human diseases, called ciliopathies. Chlamydomonas is one of the widely used organisms to study ciliary biology, and the research involving this organism has been playing a leading role in our understanding of ciliary biology and ciliopathies.

This is a preview of subscription content, log in via an institution.

References

  • Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193:317–319

    Article  CAS  PubMed  Google Scholar 

  • Alazami AM, Seidahmed MZ, Alzahrani F, Mohammed AO, Alkuraya FS (2014) Novel IFT122 mutation associated with impaired ciliogenesis and cranioectodermal dysplasia. Mol Genet Genomic Med 2:103–106

    Article  CAS  PubMed  Google Scholar 

  • Alstrom CH, Hallgren B, Nilsson LB, Asander H (1959) Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness: a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: a clinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr Neurol Scand Suppl 129:1–35

    CAS  PubMed  Google Scholar 

  • Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425:628–633

    Article  CAS  PubMed  Google Scholar 

  • Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-Hoeijmakers JH, de Leeuw N et al (2011) C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet 48:390–395

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, Beales PL, Dietz HC, Fisher S, Katsanis N (2006a) Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439:326–330

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006b) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker K, Beales PL (2009) Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet 151C:281–295

    Article  CAS  PubMed  Google Scholar 

  • Bangs FK, Schrode N, Hadjantonakis AK, Anderson KV (2015) Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol 17:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbato A, Frischer T, Kuehni CE, Snijders D, Azevedo I, Baktai G, Bartoloni L, Eber E, Escribano A, Haarman E et al (2009) Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 34:1264–1276

    Article  CAS  PubMed  Google Scholar 

  • Barker AR, Thomas R, Dawe HR (2014) Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 10:96–107

    Article  PubMed  Google Scholar 

  • Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389

    CAS  PubMed  Google Scholar 

  • Baujat G, Le Merrer M (2007) Ellis-van Creveld syndrome. Orphanet J Rare Dis 2:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 36:437–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J et al (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 39:727–729

    Article  CAS  PubMed  Google Scholar 

  • Blaby IK, Blaby-Haas CE, Tourasse N, Hom EF, Lopez D, Aksoy M, Grossman A, Umen J, Dutcher S, Porter M et al (2014) The Chlamydomonas genome project: a decade on. Trends Plant Sci 19:672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair HJ, Tompson S, Liu YN, Campbell J, MacArthur K, Ponting CP, Ruiz-Perez VL, Goodship JA (2011) Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus. BMC Biol 9:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boesger J, Wagner V, Weisheit W, Mittag M (2009) Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii. Eukaryot Cell 8:922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley BA, Quarmby LM (2005) A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J Cell Sci 118:3317–3326

    Article  CAS  PubMed  Google Scholar 

  • Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbo M, Filhol E, Bole-Feysot C et al (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89:634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Witman GB (2014) Cilia and diseases. Bioscience 64:1126–1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q, Dutcher SK, Liu Y, Snell WJ (2015) Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. Elife 4

    Google Scholar 

  • Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 16:529–556

    CAS  PubMed  Google Scholar 

  • Chacon-Camacho OF, Zenteno JC (2015) Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 3:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CP (2007) Meckel syndrome: genetics, perinatal findings, and differential diagnosis. Taiwan J Obstet Gynecol 46:9–14

    Article  PubMed  Google Scholar 

  • Christensen ST, Clement CA, Satir P, Pedersen LB (2012) Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 226:172–184

    Article  CAS  PubMed  Google Scholar 

  • Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P, Beck S, Boerkoel CF, Sicolo N, Martin M et al (2002) Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet 31:74–78

    CAS  PubMed  Google Scholar 

  • Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190:927–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagoneau N, Goulet M, Genevieve D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L et al (2009) DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 84:706–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis EE, Katsanis N (2012) The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 22:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davy BE, Robinson ML (2003) Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 12:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Dell KM (2015) The role of cilia in the pathogenesis of cystic kidney disease. Curr Opin Pediatr 27:212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, Zonneveld MN, Strom TM, Meitinger T, Brunner HG et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79:556–561

    Article  Google Scholar 

  • den Hollander AI, Roepman R, Koenekoop RK, Cremers FP (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27:391–419

    Article  CAS  Google Scholar 

  • Douek E, Bannister LH, Dodson HC (1975) Recent advances in the pathology of olfaction. Proc R Soc Med 68:467–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutcher SK (2014) The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 71:79–94

    Article  Google Scholar 

  • Eleftheriades M, Iavazzo C, Manolakos E, Hassiakos D, Botsis D, Petersen M, Konstantinidou A (2013) Recurrent short rib polydactyly syndrome. J Obstet Gynaecol 33:14–16

    Article  CAS  PubMed  Google Scholar 

  • Ellis RW, van Creveld S (1940) A syndrome characterized by ectodermal dysplasia, polydactyly, chondro-dysplasia and congenital morbus cordis: report of three cases. Arch Dis Child 15:65–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feather SA, Winyard PJ, Dodd S, Woolf AS (1997) Oral-facial-digital syndrome type 1 is another dominant polycystic kidney disease: clinical, radiological and histopathological features of a new kindred. Nephrol Dial Transplant 12:1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Ferrante MI, Giorgio G, Feather SA, Bulfone A, Wright V, Ghiani M, Selicorni A, Gammaro L, Scolari F, Woolf AS et al (2001) Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 68:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dolle P, Franco B (2006) Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 38:112–117

    Article  CAS  PubMed  Google Scholar 

  • Foxman SG, Heckenlively JR, Bateman JB, Wirtschafter JD (1985) Classification of congenital and early onset retinitis pigmentosa. Arch Ophthalmol 103:1502–1506

    Article  CAS  PubMed  Google Scholar 

  • Franceschetti A, Dieterle P (1954) Diagnostic and prognostic importance of the electroretinogram in tapetoretinal degeneration with reduction of the visual field and hemeralopia. Confin Neurol 14:184–186

    Article  CAS  PubMed  Google Scholar 

  • Gagnadoux MF, Bacri JL, Broyer M, Habib R (1989) Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol 3:50–55

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Segal Y, Peissel B, Deng N, Pei Y, Carone F, Rennke HG, Glucksmann-Kuis AM, Schneider MC, Ericsson M et al (1996) Identification and localization of polycystin, the PKD1 gene product. J Clin Invest 98:2674–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG et al (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87:418–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE et al (2013) Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 93:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearn T, Renforth GL, Spalluto C, Hanley NA, Piper K, Brickwood S, White C, Connolly V, Taylor JF, Russell-Eggitt I et al (2002) Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet 31:79–83

    CAS  PubMed  Google Scholar 

  • Hearn T, Spalluto C, Phillips VJ, Renforth GL, Copin N, Hanley NA, Wilson DI (2005) Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 54:1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Hemachandar R (2014) Senior-loken syndrome – a ciliopathy. J Clin Diagn Res 8:MD04–MD05

    Google Scholar 

  • Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M, Adolphs J, Hanusch H, Brandis M (1997a) A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet 17:149–153

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt F, Strahm B, Nothwang HG, Gretz N, Schnieders B, Singh-Sawhney I, Kutt R, Vollmer M, Brandis M (1997b) Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Kidney Int 51:261–269

    Article  CAS  PubMed  Google Scholar 

  • Hilgendorf KI, Johnson CT, Jackson PK (2016) The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 39:84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffer JL, Fryssira H, Konstantinidou AE, Ropers HH, Tzschach A (2013) Novel WDR35 mutations in patients with cranioectodermal dysplasia (Sensenbrenner syndrome). Clin Genet 83:92–95

    Article  CAS  PubMed  Google Scholar 

  • Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B, Wright AF, Arshavsky VY, Li T (2003) RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 44:2413–2421

    Article  PubMed  Google Scholar 

  • Horst CJ, Johnson LV, Besharse JC (1990) Transmembrane assemblage of the photoreceptor connecting cilium and motile cilium transition zone contain a common immunologic epitope. Cell Motil Cytoskeleton 17:329–344

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Liang Y, He W, Pan J (2015) Cilia disassembly with two distinct phases of regulation. Cell Rep 10:1803–1810

    Article  CAS  PubMed  Google Scholar 

  • Huangfu DW, Liu AM, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87

    Article  CAS  PubMed  Google Scholar 

  • Iannaccone A, Mykytyn K, Persico AM, Searby CC, Baldi A, Jablonski MM, Sheffield VC (2005) Clinical evidence of decreased olfaction in Bardet-Biedl syndrome caused by a deletion in the BBS4 gene. Am J Med Genet A 132A:343–346

    Article  PubMed  Google Scholar 

  • Jenkins PM, McEwen DP, Martens JR (2009) Olfactory cilia: linking sensory cilia function and human disease. Chem Senses 34:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeune M, Beraud C, Carron R (1955) Asphyxiating thoracic dystrophy with familial characteristics. Arch Fr Pediatr 12:886–891

    CAS  PubMed  Google Scholar 

  • Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82:393–412

    Article  CAS  PubMed  Google Scholar 

  • Kartagener ODM (1933) Zur pathogenese der bronchiektasien. Beitr Klin Tuberk Spezif Tuberkuloseforsch 84:73–85

    Article  Google Scholar 

  • Khanna H, Hurd TW, Lillo C, Shu X, Parapuram SK, He S, Akimoto M, Wright AF, Margolis B, Williams DS et al (2005) RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem 280:33580–33587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, Liang D, Zhao P, Ma J, Chen XZ et al (2008) Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19:455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L (2011) Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 13:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knorz VJ, Spalluto C, Lessard M, Purvis TL, Adigun FF, Collin GB, Hanley NA, Wilson DI, Hearn T (2010) Centriolar association of ALMS1 and likely centrosomal functions of the ALMS motif-containing proteins C10orf90 and KIAA1731. Mol Biol Cell 21:3617–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW (2013) Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med 188:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulaga HM, Leitch CC, Eichers ER, Badano JL, Lesemann A, Hoskins BE, Lupski JR, Beales PL, Reed RR, Katsanis N (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 36:994–998

    Article  CAS  PubMed  Google Scholar 

  • Kurkowiak M, Zietkiewicz E, Witt M (2015) Recent advances in primary ciliary dyskinesia genetics. J Med Genet 52:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N, Paavola-Sakki P, Peltonen L, Kestila M (2006) MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet 38:155–157

    Article  PubMed  CAS  Google Scholar 

  • Lavanya R, Pratap K (1995) Short rib polydactyly syndrome—a rare skeletal dysplasia. Int J Gynaecol Obstet 50:291–292

    Article  CAS  PubMed  Google Scholar 

  • Leber T (1869) Ueber Retinitis pigmentosa und angeborene Amaurose. Graefes Arch Clin Exp Ophthalmol 15:1–25

    Article  Google Scholar 

  • Lechtreck KF (2015) IFT-cargo interactions and protein transport in cilia. Trends Biochem Sci 40:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechtreck KF, Witman GB (2007) Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 176:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB (2009) The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 187:1117–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 91:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre PA, Nordstrom SA, Moulder JE, Rosenbaum JL (1978) Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol 78:8–27

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC et al (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117:541–552

    Article  CAS  PubMed  Google Scholar 

  • Li G, Vega R, Nelms K, Gekakis N, Goodnow C, McNamara P, Wu H, Hong NA, Glynne R (2007) A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet 3:e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C, Tomizawa K, Kaitsuka T, Sung CH (2011) Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat Cell Biol 13:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Garrod AS, Madan-Khetarpal S, Sreedher G, McGuire M, Yagi H, Klena NT, Gabriel GC, Khalifa O, Zahid M et al (2015) Respiratory motile cilia dysfunction in a patient with cranioectodermal dysplasia. Am J Med Genet A 167A:2188–2196

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Meng D, Zhu B, Pan J (2016) Mechanism of ciliary disassembly. Cell Mol Life Sci 73:1787–1802

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Zhang Z, Guo S, Chen F, Kessler JM, Wang YM, Dutcher SK (2015) A NIMA-related kinase suppresses the flagellar instability associated with the loss of multiple axonemal structures. PLoS Genet 11:e1005508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loken AC, Hanssen O, Halvorsen S, Jolster NJ (1961) Hereditary renal dysplasia and blindness. Acta Paediatr 50:177–184

    Article  CAS  PubMed  Google Scholar 

  • Mahjoub MR, Montpetit B, Zhao L, Finst RJ, Goh B, Kim AC, Quarmby LM (2002) The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. J Cell Sci 115:1759–1768

    CAS  PubMed  Google Scholar 

  • Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten J, Dede D, Fennell E (1999) Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol 14:368–376

    Article  CAS  PubMed  Google Scholar 

  • Marshall JD, Ludman MD, Shea SE, Salisbury SR, Willi SM, LaRoche RG, Nishina PM (1997) Genealogy, natural history, and phenotype of Alstrom syndrome in a large Acadian kindred and three additional families. Am J Med Genet 73:150–161

    Article  CAS  PubMed  Google Scholar 

  • Marshall JD, Bronson RT, Collin GB, Nordstrom AD, Maffei P, Paisey RB, Carey C, Macdermott S, Russell-Eggitt I, Shea SE et al (2005) New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med 165:675–683

    Article  PubMed  Google Scholar 

  • Marshall JD, Beck S, Maffei P, Naggert JK (2007) Alstrom syndrome. Eur J Hum Genet 15:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Marszalek JR, Goldstein LS (2000) Understanding the functions of kinesin-II. Biochim Biophys Acta 1496:142–150

    Article  CAS  PubMed  Google Scholar 

  • May-Simera HL, Kelley MW (2012) Cilia, Wnt signaling, and the cytoskeleton. Cilia 1:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen DP, Koenekoop RK, Khanna H, Jenkins PM, Lopez I, Swaroop A, Martens JR (2007) Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci U S A 104:15917–15922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckel JF (1822) Beschreibung zweier, durch sehr ähnliche Bildungsabweichungen entstellter Geschwister. Dtsch Arch Physiol 7:99–172

    Google Scholar 

  • Meng D, Pan J (2016) A NIMA-related kinase, CNK4, regulates ciliary stability and length. Mol Biol Cell 27:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill AE, Merriman B, Farrington-Rock C, Camacho N, Sebald ET, Funari VA, Schibler MJ, Firestein MH, Cohn ZA, Priore MA et al (2009) Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet 84:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill P, Lockhart PJ, Fitzpatrick E, Mountford HS, Hall EA, Reijns MA, Keighren M, Bahlo M, Bromhead CJ, Budd P et al (2011) Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am J Hum Genet 88:508–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minton JA, Owen KR, Ricketts CJ, Crabtree N, Shaikh G, Ehtisham S, Porter JR, Carey C, Hodge D, Paisey R et al (2006) Syndromic obesity and diabetes: changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. J Clin Endocrinol Metab 91:3110–3116

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DR (2004) Speculations on the evolution of 9+2 organelles and the role of central pair microtubules. Biol Cell 96:691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Mohr OL (1941) A hereditary sublethal syndrome in man. Nor Vidensk Akad Oslo I Mat Naturv Klasse 14:3–18

    Google Scholar 

  • Morgan NV, Bacchelli C, Gissen P, Morton J, Ferrero GB, Silengo M, Labrune P, Casteels I, Hall C, Cox P et al (2003) A locus for asphyxiating thoracic dystrophy, ATD, maps to chromosome 15q13. J Med Genet 40:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatomi M, Hovorakova M, Gritli-Linde A, Blair HJ, MacArthur K, Peterka M, Lesot H, Peterkova R, Ruiz-Perez VL, Goodship JA et al (2013) Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res 92:222–228

    Article  CAS  PubMed  Google Scholar 

  • Narita K, Takeda S (2015) Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  CAS  PubMed  Google Scholar 

  • Novas R, Cardenas-Rodriguez M, Irigoin F, Badano JL (2015) Bardet-Biedl syndrome: is it only cilia dysfunction? FEBS Lett 589:3479–3491

    Article  CAS  PubMed  Google Scholar 

  • O’Dea D, Parfrey PS, Harnett JD, Hefferton D, Cramer BC, Green J (1996) The importance of renal impairment in the natural history of Bardet-Biedl syndrome. Am J Kidney Dis 27:776–783

    Article  PubMed  Google Scholar 

  • Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, Banki NF, Shoemark A, Burgoyne T, Al Turki S et al (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91:672–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omran H, Fernandez C, Jung M, Haffner K, Fargier B, Villaquiran A, Waldherr R, Gretz N, Brandis M, Ruschendorf F et al (2000) Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet 66:118–127

    Article  CAS  PubMed  Google Scholar 

  • Ozgul RK, Satman I, Collin GB, Hinman EG, Marshall JD, Kocaman O, Tutuncu Y, Yilmaz T, Naggert JK (2007) Molecular analysis and long-term clinical evaluation of three siblings with Alstrom syndrome. Clin Genet 72:351–356

    Article  CAS  PubMed  Google Scholar 

  • Pan J (2008) Cilia and ciliopathies: from Chlamydomonas and beyond. Sci China C Life Sci 51:479–486

    Article  CAS  PubMed  Google Scholar 

  • Pan JM, Misamore MJ, Wang Q, Snell WJ (2003) Protein transport and signal transduction during fertilization in Chlamydomonas. Traffic 4:452–459

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Wang Q, Snell WJ (2004) An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell 6:445–451

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Naumann-Busch B, Wang L, Specht M, Scholz M, Trompelt K, Hippler M (2011) Protein phosphorylation is a key event of flagellar disassembly revealed by analysis of flagellar phosphoproteins during flagellar shortening in Chlamydomonas. J Proteome Res 10:3830–3839

    Article  CAS  PubMed  Google Scholar 

  • Papillon L, Psaume J (1954) Hereditary abnormality of the buccal mucosa: abnormal bands and frenula. Revue Stomatol 55:209–227

    Google Scholar 

  • Parisi MA, Doherty D, Chance PF, Glass IA (2007) Joubert syndrome (and related disorders) (OMIM 213300). Eur J Hum Genet 15:511–521

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Rosenbaum JL (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12:551–555

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15:105–110

    Article  CAS  PubMed  Google Scholar 

  • Pazour G, Witman GB (2009) The Chlamydomonas flagellum as a model for human ciliary disease. In: Witman GB (ed) The Chlamydomonas sourcebook. Oxford, Elsevier, pp 445–478

    Chapter  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen LB, Miller MS, Geimer S, Leitch JM, Rosenbaum JL, Cole DG (2005) Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol 15:262–266

    Article  CAS  PubMed  Google Scholar 

  • Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, Clement A, Goossens M, Amselem S, Duriez B (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65:1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrault I, Rozet JM, Gerber S, Ghazi I, Leowski C, Ducroq D, Souied E, Dufier JL, Munnich A, Kaplan J (1999) Leber congenital amaurosis. Mol Genet Metab 68:200–208

    Article  CAS  PubMed  Google Scholar 

  • Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K et al (2012) Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 90:864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter ME, Sale WS (2000) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151:F37–F42

    Article  CAS  PubMed  Google Scholar 

  • Prattichizzo C, Macca M, Novelli V, Giorgio G, Barra A, Franco B, Oral-Facial-Digital Type ICG (2008) Mutational spectrum of the oral-facial-digital type I syndrome: a study on a large collection of patients. Hum Mutat 29:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Praveen K, Davis EE, Katsanis N (2015) Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder. F1000Prime Rep 7:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129:1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher N, Hambrock M, Fischer U, Moser B, Ceulemans B, Lieb W, Boor R, Stefanova I, Gillessen-Kaesbach G, Runge C et al (2011) Identification of a novel CDKL5 exon and pathogenic mutations in patients with severe mental retardation, early-onset seizures and Rett-like features. Neurogenetics 12:165–167

    Article  PubMed  Google Scholar 

  • Raven P, Evert R, Eichhorn S (1999) Biology of plants, 6th edn. Freeman/Worth, New York

    Google Scholar 

  • Reiter JF, Blacque OE, Leroux MR (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13:608–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquillo CC, Bernstein PS, Baehr W (2012) Senior-Loken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis. Vis Res 75:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum JL, Moulder JE, Ringo DL (1969) Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol 41:600–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Perez VL, Tompson SW, Blair HJ, Espinoza-Valdez C, Lapunzina P, Silva EO, Hamel B, Gibbs JL, Young ID, Wright MJ et al (2003) Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am J Hum Genet 72:728–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saletti D, Grigio TR, Tonelli D, Ribeiro OD, Marini F (2012) Case report: anesthesia in patients with asphyxiating thoracic dystrophy: Jeune syndrome. Rev Bras Anestesiol 62:424–431

    Article  PubMed  Google Scholar 

  • Salomon R, Saunier S, Niaudet P (2009) Nephronophthisis. Pediatr Nephrol 24:2333–2344

    Article  PubMed  Google Scholar 

  • Salonen R, Norio R (1984) The Meckel syndrome in Finland: epidemiologic and genetic aspects. Am J Med Genet 18:691–698

    Article  CAS  PubMed  Google Scholar 

  • Salonen R, Paavola P (1998) Meckel syndrome. J Med Genet 35:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunier S, Salomon R, Antignac C (2005) Nephronophthisis. Curr Opin Genet Dev 15:324–331

    Article  CAS  PubMed  Google Scholar 

  • Schmidts M (2014) Clinical genetics and pathobiology of ciliary chondrodysplasias. J Pediatr Genet 3:46–94

    PubMed  Google Scholar 

  • Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M et al (2013) Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat 34:714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  CAS  PubMed  Google Scholar 

  • Senior B, Friedmann AI, Braudo JL (1961) Juvenile familial nephropathy with tapetoretinal degeneration. A new oculorenal dystrophy. Am J Ophthalmol 52:625–633

    Article  CAS  PubMed  Google Scholar 

  • Sensenbrenner JA, Dorst JP, Owens RP (1975) New syndrome of skeletal, dental and hair anomalies. Birth Defects Orig Artic Ser 11:372–379

    CAS  PubMed  Google Scholar 

  • Shaheen R, Schmidts M, Faqeih E, Hashem A, Lausch E, Holder I, Superti-Furga A, Consortium UK, Mitchison HM, Almoisheer A et al (2015) A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies. Hum Mol Genet 24:1410–1419

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Berbari NF, Yoder BK (2008) Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85:371–427

    Article  CAS  PubMed  Google Scholar 

  • Shetty P, Shetty D, Priyadarshana PS, Bhat S (2015) A rare case report of Ellis Van Creveld syndrome in an Indian patient and literature review. J Oral Biol Craniofac Res 5:98–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silflow CD, Lefebvre PA (2001) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127:1500–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla V, Romaguera-Ros M, Garcia-Verdugo JM, Reiter JF (2010) Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell 18:410–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleigh MA (1981) Primary ciliary dyskinesia. Lancet 2:476

    Article  CAS  PubMed  Google Scholar 

  • Szymanska K, Hartill VL, Johnson CA (2014) Unraveling the genetics of Joubert and Meckel-Gruber syndromes. J Pediatr Genet 3:65–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam LW, Ranum PT, Lefebvre PA (2013) CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas. Mol Biol Cell 24:588–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taschner M, Lorentzen E (2016) The intraflagellar transport machinery. Cold Spring Harb Perspect Biol 8

    Google Scholar 

  • Taub DG, Liu Q (2016) The role of intraflagellar transport in the photoreceptor sensory cilium. Adv Exp Med Biol 854:627–633

    Article  CAS  PubMed  Google Scholar 

  • Thauvin-Robinet C, Cossee M, Cormier-Daire V, Van Maldergem L, Toutain A, Alembik Y, Bieth E, Layet V, Parent P, David A et al (2006) Clinical, molecular, and genotype-phenotype correlation studies from 25 cases of oral-facial-digital syndrome type 1: a French and Belgian collaborative study. J Med Genet 43:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tompson SW, Ruiz-Perez VL, Blair HJ, Barton S, Navarro V, Robson JL, Wright MJ, Goodship JA (2007) Sequencing EVC and EVC2 identifies mutations in two-thirds of Ellis-van Creveld syndrome patients. Hum Genet 120:663–670

    Article  CAS  PubMed  Google Scholar 

  • Torres VE, Rossetti S, Harris PC (2007) Update on autosomal dominant polycystic kidney disease. Minerva Med 98:669–691

    CAS  PubMed  Google Scholar 

  • Tory K, Lacoste T, Burglen L, Moriniere V, Boddaert N, Macher MA, Llanas B, Nivet H, Bensman A, Niaudet P et al (2007) High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol 18:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Valente EM, Marsh SE, Castori M, Dixon-Salazar T, Bertini E, Al-Gazali L, Messer J, Barbot C, Woods CG, Boltshauser E et al (2005) Distinguishing the four genetic causes of Jouberts syndrome-related disorders. Ann Neurol 57:513–519

    Article  PubMed  Google Scholar 

  • Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:39–53

    Article  CAS  Google Scholar 

  • Wahrman J, Berant M, Jacobs J, Aviad I, Ben-Hur N (1966) The oral-facial-digital syndrome: a male-lethal condition in a boy with 47/xxy chromosomes. Pediatrics 37:812–821

    CAS  PubMed  Google Scholar 

  • Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A et al (2010) Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 86:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Barr MM (2016) Ciliary extracellular vesicles: txt msg organelles. Cell Mol Neurobiol 36:449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Pan J, Snell WJ (2006) Intraflagellar transport particles participate directly in cilium-generated signaling in Chlamydomonas. Cell 125:549–562

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC, Hall DH, Barr MM (2014) C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol 24:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheatley DN (1995) Primary cilia in normal and pathological tissues. Pathobiology 63:222–238

    Article  CAS  PubMed  Google Scholar 

  • Witman GB (2009) Cell motilty and behavior. Academic Press, Oxford

    Google Scholar 

  • Wolf MT (2015) Nephronophthisis and related syndromes. Curr Opin Pediatr 27:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf MT, Hildebrandt F (2011) Nephronophthisis. Pediatr Nephrol 26:181–194

    Article  PubMed  Google Scholar 

  • Wood CR, Rosenbaum JL (2015) Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol 25:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CR, Huang K, Diener DR, Rosenbaum JL (2013) The cilium secretes bioactive ectosomes. Curr Biol 23:906–911

    Article  CAS  PubMed  Google Scholar 

  • Yabut O, Pleasure SJ, Yoon K (2015) A notch above sonic hedgehog. Dev Cell 33:371–372

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H et al (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338:226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaffanello M, Diomedi-Camassei F, Melzi ML, Torre G, Callea F, Emma F (2006) Sensenbrenner syndrome: a new member of the hepatorenal fibrocystic family. Am J Med Genet A 140:2336–2340

    Article  PubMed  Google Scholar 

  • Zaghloul NA, Katsanis N (2009) Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 119:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QH, Taulman PD, Yoder BK (2004) Cystic kidney diseases: all roads lead to the cilium. Physiology 19:225–230

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Roy S (2015) SnapShot: motile cilia. Cell 162:224.e221

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program) (2012CB945003, 2013CB910700), National Natural Science Foundation of China (31330044, 31671387), and Sino-German Center for Research Promotion (GZ990) (to J. P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Meng or Junmin Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meng, D., Pan, J. (2017). Chlamydomonas: Cilia and Ciliopathies. In: Hippler, M. (eds) Chlamydomonas: Biotechnology and Biomedicine. Microbiology Monographs, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-66360-9_4

Download citation

Publish with us

Policies and ethics