Skip to main content

Statistical Abstraction for Multi-scale Spatio-Temporal Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10503))

Abstract

Spatio-temporal systems exhibiting multi-scale behaviour are common in applications ranging from cyber-physical systems to systems biology, yet they present formidable challenges for computational modelling and analysis. Here we consider a prototypic scenario where spatially distributed agents decide their movement based on external inputs and a fast-equilibrating internal computation. We propose a generally applicable strategy based on statistically abstracting the internal system using Gaussian Processes, a powerful class of non-parametric regression techniques from Bayesian Machine Learning. We show on a running example of bacterial chemotaxis that this approach leads to accurate and much faster simulations in a variety of scenarios.

M. Michaelides and G. Sanguinetti are supported by the European Research Council under grant MLCS 306999. J. Hillston is supported by the EU project, QUANTICOL 600708.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The pCTMC is the internal model for a single agent here, not for multiple agents.

  2. 2.

    It is highly unlikely to have more than a single transition since (mL) are continuous values that constantly change for the bacterium.

  3. 3.

    We sub-sample because the KS test p-value depends heavily on sample size. Even if two distributions generating samples might be very close, in the limit of an infinite sample size one approaches the true distributions. In such a case, the KS test will reject that the two samples were produced by the same distribution, returning lower p-values as sample size increases (for the same KS distance). We do not expect to produce the same distributions here since we are making approximations, so comparing p-values for very large sample sizes is not of interest.

References

  1. Bortolussi, L., Milios, D., Sanguinetti, G.: Efficient stochastic simulation of systems with multiple time scales via statistical abstraction. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 40–51. Springer, Cham (2015). doi:10.1007/978-3-319-23401-4_5

    Chapter  Google Scholar 

  2. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chakravarty, I.M., Laha, R.G., Roy, J.D.: Handbook of Methods of Applied Statistics. McGraw-Hill, New York (1967)

    Google Scholar 

  4. Dada, J.O., Mendes, P.: Multi-scale modelling and simulation in systems biology. Integr. Biol. 3(2), 86 (2011)

    Article  Google Scholar 

  5. Frankel, N.W., Pontius, W., Dufour, Y.S., Long, J., Hernandez-Nunez, L., Emonet, T.: Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3, e03526 (2014)

    Article  Google Scholar 

  6. Gilbert, D., Heiner, M., Takahashi, K., Uhrmacher, A.M.: Multiscale Spatial Computational Systems Biology (Dagstuhl Seminar 14481) (2015)

    Google Scholar 

  7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  8. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)

    Article  Google Scholar 

  9. Hansen, C.H., Endres, R., Wingreen, N.: Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput. Biol. 4(1), e1 (2008)

    Article  MathSciNet  Google Scholar 

  10. Haseltine, E.L., Rawlings, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)

    Article  Google Scholar 

  11. Michaelides, M., Milios, D., Hillston, J., Sanguinetti, G.: Property-driven state-space coarsening for continuous time Markov chains. In: Agha, G., Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 3–18. Springer, Cham (2016). doi:10.1007/978-3-319-43425-4_1

    Chapter  Google Scholar 

  12. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  13. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003)

    Article  Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Sneddon, M.W., Pontius, W., Emonet, T.: Stochastic coordination of multiple actuators reduces latency and improves chemotactic response in bacteria. PNAS 109(3), 805–810 (2012)

    Article  Google Scholar 

  16. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: Weiss, Y., Schlkopf, P.B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems 18, pp. 1257–1264. MIT Press, Cambridge (2006)

    Google Scholar 

  17. Sourjik, V., Berg, H.C.: Functional interactions between receptors in bacterial chemotaxis. Nature 428(6981), 437–441 (2004)

    Article  Google Scholar 

  18. Sourjik, V., Wingreen, N.S.: Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol. 24(2), 262–268 (2012)

    Article  Google Scholar 

  19. Vladimirov, N., Lebiedz, D., Sourjik, V.: Predicted auxiliary navigation mechanism of peritrichously flagellated chemotactic bacteria. PLoS Comput. Biol. 6(3), e1000717 (2010)

    Article  MathSciNet  Google Scholar 

  20. Vladimirov, N., Lvdok, L., Lebiedz, D., Sourjik, V.: Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS Comput. Biol. 4(12), e1000242 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Michaelides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Michaelides, M., Hillston, J., Sanguinetti, G. (2017). Statistical Abstraction for Multi-scale Spatio-Temporal Systems. In: Bertrand, N., Bortolussi, L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science(), vol 10503. Springer, Cham. https://doi.org/10.1007/978-3-319-66335-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66335-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66334-0

  • Online ISBN: 978-3-319-66335-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics