Skip to main content

Clinical Application of LIPUS in the Dentofacial Region

  • Chapter
  • First Online:
Therapeutic Ultrasound in Dentistry

Abstract

The current scientific evidence supports that LIPUS has many clinical applications in the dentofacial region. This includes, but is not limited to, accelerating bone healing after any surgery, acceleration of soft tissue healing, accelerating tooth movement, and prevention of orthodontically induced root resorption. Also, there is strong evidence that LIPUS can be used in other dental applications like healing of dentoalveolar fractures after trauma. LIPUS also may help in dental pulp regeneration as well as periodontal regeneration. Moreover, LIPUS may aid in implant-bone integration. Details of these current and potential clinical applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka E, Kuroda S, Horiuchi S, Tabata A, El-Bialy T. Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann Biomed Eng. 2015;43(4):871–86.

    Article  PubMed  Google Scholar 

  2. Nakamura T, Fujihara S, Katsura T, Yamamoto K, Inubushi T, Tanimoto K, Tanaka E. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann Biomed Eng. 2011;39:2964–71.

    Article  PubMed  Google Scholar 

  3. Al-Daghreer S, Doschak M, Sloane A, Major P, Heo G, Scurtescu Y, Tsui Y, El-Bialy T. Effect of LIPUS on orthodontically induced root resorption in Beagle dogs. Ultrasound Med Biol. 2014;40:1187–96.

    Article  PubMed  Google Scholar 

  4. Dyson M, Pond J, Joseph J, Warwick R. The stimulation of tissue regeneration by means of ultrasound. Clin Sci. 1968;35:273–85.

    PubMed  Google Scholar 

  5. Young S, Dyson M. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol. 1990;16:261–9.

    Article  PubMed  Google Scholar 

  6. Angle S, Sena K, Sumner D, Virdi A. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics. 2011;51:281–8.

    Article  PubMed  Google Scholar 

  7. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16:671–80.

    Article  PubMed  Google Scholar 

  8. El-Bialy T, Alhadlaq A, Wong B, Kucharski C. Ultrasound effect on neural differentiation of gingival stem/progenitor cells. Ann Biomed Eng. 2014;42:1406–12.

    Article  PubMed  Google Scholar 

  9. Al-Daghreer S, Doschak M, Sloan A, Major P, Heo G, Scurtescu Y, Tsui Y, El-Bialy T. Short-term effect of low-intensity pulsed ultrasound on an ex vivo 3-d tooth culture. Ultrasound Med Biol. 2013;39:1066–74.

    Article  PubMed  Google Scholar 

  10. Al-Daghreer S, Doschak M, Sloan A, Major P, Heo G, Scurtescu Y, Tsui Y, El-Bialy T. Long term effect of low intensity pulsed ultrasound on a human tooth slice organ culture. Arch Oral Biol. 2012;57:760–8.

    Article  PubMed  Google Scholar 

  11. Balducci L, Ramachandran A, Hao J, Narayanan K, Evans C, George A. Biological markers for evaluation of root resorption. Arch Oral Biol. 2007;52(3):203–8.

    Article  PubMed  Google Scholar 

  12. Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA. 2001;98(8):4516–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Raza H, Major PW, Dederich D, El-Bialy T. Effect of low intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: a prospective double blind controlled clinical trial. Angle Orthod. 2016;35(2):349–58.

    Google Scholar 

  14. El-Bialy T. Low intensity pulsed ultrasound accelerates tooth movement in human; 2017 Mar 25; IADR, San Francisco, Oral Presentation. ID#: 2626212.

    Google Scholar 

  15. Ren L, Yang Z, Song J, Wang Z, Deng F, Li W. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells. Ultrasonics. 2013;53:686–90.

    Article  PubMed  Google Scholar 

  16. Harle J, Salih V, Mayia F, Knowles J, Olsen I. Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound Med Biol. 2001;27(4):579–86.

    Article  PubMed  Google Scholar 

  17. Ikai H, Tamura T, Watanabe T, Itou M, Sugaya A, Iwabuchi S, Mikuni-Takagaki Y, Deguchi S. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery. J Periodontal Res. 2008;43:212–6.

    Article  PubMed  Google Scholar 

  18. Shiraishi R, Masaki C, Toshinaga A, Okinaga T, Nishihara T, Yamanaka N, Nakamoto T, Hosokawa R. The effects of low-intensity pulsed ultrasound exposure on gingival cells. 2011;82(10):1498-503.

    Google Scholar 

  19. Lim K, Kim J, Seonwoo H, Park S, Choung P, Chung J. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. Biomed Res Int. 2013;2013:1–15.

    Google Scholar 

  20. Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun. 1999;256:284–7.

    Article  PubMed  Google Scholar 

  21. Chikazu D, Tomizuka K, Ogasawara T, Saijo H, Koizumi T, Mori Y, Yonehara Y, Susami T, Takato T. Cyclooxygenase-2 activity is essential for the osseointegration of dental implants. Int J Oral Maxillofac Surg. 2007;36:441–6.

    Article  PubMed  Google Scholar 

  22. El-Bialy T, Elgazzar R, Megahed E, Royston T. Effects of ultrasound modes on mandibular osteodistraction. J Dent Res. 2008;87(10):953–7.

    Article  PubMed  Google Scholar 

  23. Erdoğan Ö, Esen E, Üstün Y, Kürkçü M, Akova T, Gönlüşen G, Uysal H, Çevlik F. Effects of low-intensity pulsed ultrasound on healing of mandibular fractures: an experimental study in rabbits. J Oral Maxillofac Surg. 2006;64:180–8.

    Article  PubMed  Google Scholar 

  24. El-Bialy T, El-Shamy I, Graber TM. Growth modification of the rabbit mandible using therapeutic ultrasound: is it possible to enhance functional appliance results? Angle Orthod. 2003;73:631–9.

    PubMed  Google Scholar 

  25. El-Bialy TH, Hassan A, Albaghdadi T, Fouad HA, Maimani AR. Growth modification of the mandible using ultrasound in baboons: a preliminary report. Am J Orthod Dentofac Orthop. 2006;130(10):435 e7–e14.

    Google Scholar 

  26. El-Bialy T, Hassan AH, Alyamani A, Albaghdadi T. Treatment of hemifacial microsomia by therapeutic ultrasound and hybrid functional appliance. A non-surgical approach. Open Access J Clin Trials. 2010;2:29–36.

    Article  Google Scholar 

  27. Oyonarte R, Zárate M, Rodriguez F. Low-intensity pulsed ultrasound stimulation of condylar growth in rats. Angle Orthod. 2009;79:964–70.

    Article  PubMed  Google Scholar 

  28. Alzaheri N, Abdallah MN, Crossman JJ, Tamimi F, Flood P, El-Bialy TH. Effect of ultrasound on condylar growth in juvenile arthritic mice; 2016 Jun; IADR Seoul, South Korea. Abstract ID #: 2474650.

    Google Scholar 

  29. Crossman J, Alzaheri N, Abdallah MN, Tamimi F, Flood P, El-Bialy T. Morphometric analysis of ultrasound-treated arthritic mouse model mandibles; 2017 Mar 23; IADR, San Francisco. Abstract #: 1288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek El-Bialy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crossman, J., Kaur, H., El-Bialy, T. (2018). Clinical Application of LIPUS in the Dentofacial Region. In: El-Bialy, T., Tanaka, E., Aizenbud, D. (eds) Therapeutic Ultrasound in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66323-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66323-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66322-7

  • Online ISBN: 978-3-319-66323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics