Skip to main content

Application of LIPUS for Bone Healing

  • Chapter
  • First Online:
Book cover Therapeutic Ultrasound in Dentistry
  • 466 Accesses

Abstract

Therapeutic low-intensity pulsed ultrasound (LIPUS) has been used to enhance bone healing caused by fracture in human and animal models, and it has been well accepted in accelerating tibial fracture healing, by delivering mechanical stimulation by means of LIPUS at an intensity of 30 mW/cm2, with 200-ms pulses generated at a frequency of 1.5 MHz. For not only normal bone fracture but also for complex bone fractures in the presence of metabolic bone diseases such as diabetes mellitus (DM) and osteoporosis (OP), LIPUS might promote bone healing with increased mechanical strength and callus size together with reduced healing times. This implies that LIPUS can be a promising therapeutic tool for accelerating the fracture healing process. However, there has been still a controversy about the effects of LIPUS in human trials. Therefore, well-designed and precise clinical studies are needed to operate for further applications in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Bialy T, Royston T, Magin R, Evans CA, Zaki A-M, Frizzell LA. The effect of pulsed ultrasound on mandibular distraction. Ann Biomed Eng. 2002;30:1251–61.

    Article  Google Scholar 

  2. Maintz G. Animal experiments in the study of the effect of ultrasonic waves on bone regeneration. Strahlentherapie. 1950;82:631–8.

    PubMed  Google Scholar 

  3. Corradi C, Cozzolino A. Effect of ultrasonics on the development of osseous callus in fractures. Arch Ortop. 1953;66:77–98.

    PubMed  Google Scholar 

  4. Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Traum Surg. 1983;101:153–9.

    Article  Google Scholar 

  5. Xavier CM, Duarte LR. Estimulacao ultra-sonica do calo osseo. Aplicacao Clinica Rev Bras Ortop. 1983;18:73–80.

    Google Scholar 

  6. Heckman JD, Ryabi J, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76:26–34.

    Article  Google Scholar 

  7. Heckman JD, Sarasohn-Kahn J. The economics of treating tibia fractures. The cost of delayed unions. Bull Hosp Jt Dis. 1997;56:63–72.

    PubMed  Google Scholar 

  8. Busse J, Kaur J, Mollon B, Bhandari M, Tornetta P 3rd, Schünemann HJ, Guyatt GH. Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. BMJ. 2002;338:b351.

    Article  Google Scholar 

  9. Kristiansen T, Ryabi J, McCabe J, Frey JJ, Roe LR. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am. 1997;79:961–73.

    Article  Google Scholar 

  10. Busse J, Bhandari M, Kulkarni A. The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis. Can Med Assoc J. 2002;166:437–41.

    Google Scholar 

  11. Cook S, Ryabi J, McCabe J, Frey JJ, Heckman JD, Kristiansen TK. Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop Relat Res. 1997;337:198–207.

    Article  Google Scholar 

  12. Leung K, Lee W, Tsui H, Liu PP, Cheung WH. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol. 2004;30:389–95.

    Article  Google Scholar 

  13. Mayr E, Rudzki MM, Rudzki M, Borchardt B, Häusser H, Rüter A. Beschleunigt niedrig intensiver, gepulster Ultraschall die Heilung von Skaphoidfrakturen? Handchir Mikrochir Plast Chir. 2000;32:115–22.

    Article  Google Scholar 

  14. Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics. 2008;48:330–8.

    Article  Google Scholar 

  15. Urita A, Iwasaki N, Kondo M, Nishio Y, Kamishima T, Minami A. Effect of low-intensity pulsed ultrasound on bone healing at osteotomy sites after forearm bone shortening. J Hand Surg. 2013;38:498–503.

    Article  Google Scholar 

  16. Zura R, Mehta S, Della Rocca GJ, Jones J, Steen RG. A cohort study of 4,190 patients treated with low-intensity pulsed ultrasound (LIPUS): findings in the elderly versus all patients. BMC Musculoskelet Disord. 2015;16:45.

    Article  Google Scholar 

  17. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16:671–80.

    Article  Google Scholar 

  18. Freeman T, Patel P, Parvizi J, Antoci V Jr, Shapiro IM. Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing. J Orthop Res. 2009;27:673–9.

    Article  Google Scholar 

  19. Tarantino U, Cerocchi I, Celi M, Scialdoni A, Cerrocchi I. Pharmacological agents and bone healing. Clin Cases Miner Bone Metab. 2009;6:144–8.

    PubMed  PubMed Central  Google Scholar 

  20. Oei L, Rivadeneira F, Zillikens M, Oei EH. Diabetes, diabetic complications, and fracture risk. Cur Osteoporos Rep. 2015;13:106–15.

    Article  Google Scholar 

  21. Wang SJ, Lewallen DG, Bolander ME, Chao EY, Ilstrup DM, Greenleaf JF. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res. 1994;12:40–7.

    Article  Google Scholar 

  22. Funk JR, Hale JE, Carmines D, Gooch HL, Hurwitz SR. Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res. 2000;18:126–32.

    Article  Google Scholar 

  23. Macey LR, Kana SM, Jinguishi S, Terek RM, Borretos J, Bolander ME. Defects of early fracture healing in experimental diabetes. J Bone Joint Surg. 1989;71:722–33.

    Article  Google Scholar 

  24. Gebauer G, Lin S, Beam H, Vieira P, Parsons JR. Low-intensity pulsed ultrasound increases the fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation. J Orthop Res. 2002;20:587–92.

    Article  Google Scholar 

  25. Coords M, Breitbar E, Paglia D, Kappy N, Gandhi A, Cottrell J, et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing. J Orthop Res. 2011;29:181–8.

    Article  Google Scholar 

  26. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, et al. Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol. 1999;68:3–8.

    Article  Google Scholar 

  27. McCann R, Colleary G, Geddis C, Clarke SA, Jordan GR, Dickson GR, Marsh D. Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res. 2008;26:384–93.

    Article  Google Scholar 

  28. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80–6.

    Article  Google Scholar 

  29. Hao YJ, Zhang G, Wang YS, Qin L, Hung WY, Leung K, Pei FX. Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone. 2007;41:631–8.

    Article  Google Scholar 

  30. Arai T, Ohashi T, Daitoh Y, Inoue S. The effect of ultrasound stimulation on disuse osteoporosis. Trans Bioelectric Repair Growth Soc. 1993;13:17.

    Google Scholar 

  31. Warden SJ, Bennell KL, Forwood MR, McMeeken JM, Wark JD. Skeletal effects of low-intensity pulsed ultrasound on the ovariectomized rodent. Ultrasound Med Biol. 2001;27:989–98.

    Article  Google Scholar 

  32. Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone. 2001;29:431–6.

    Article  Google Scholar 

  33. Carvalho DCL, Cliquet A. The action of low-intensity pulsed ultrasound in bones of osteopenic rats. Artif Organs. 2004;28:114–8.

    Article  Google Scholar 

  34. Wu S, Kawahara Y, Manabe T, Ogawa K, Matsumoto M, Sasaki A, Yuge L. Low-intensity pulsed ultrasound accelerates osteoblast differentiation and promotes bone formation in an osteoporosis rat model. Pathobiology. 2009;76:99–107.

    Article  Google Scholar 

  35. Woo D, Ko C, Kim H, Seo JB, Lim D. Evaluation of the potential clinical application of low-intensity ultrasound stimulation for preventing osteoporotic bone fracture. Ann Biomed Eng. 2010;38:2438–46.

    Article  Google Scholar 

  36. Cheung W, Chin W, Qin L, Leung KS. Low intensity pulsed ultrasound enhances fracture healing in both ovariectomy-induced osteoporotic and age-matched normal bones. J Orthop Res. 2012;30:129–36.

    Article  Google Scholar 

  37. Cao Y, Mori S, Mashiba T, Westmore MS Ma L, Sato M, et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res. 2002;17:2237–46.

    Article  Google Scholar 

  38. Nozaka K, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Shimada Y. Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone. 2008;42:90–7.

    Article  Google Scholar 

  39. Kneissel M, Boyde A, Gasser JA. Bone tissue and its mineralization in aged estrogen- depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH (1–34). Bone. 2001;28:237–50.

    Article  Google Scholar 

  40. Pettway GJ, Meganck JA, Koh AJ, Keller ET, Goldstein SA, McCauley LK. Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentia- tion. Bone. 2008;42:806–18.

    Article  Google Scholar 

  41. Black DM, Bilezikian JP, Greenspan SL, Wüster C, Muñoz-Torres M, Bone HG, Rosen CJ. Improved adherence with PTH(1–84) in an extension trial for 24 months results in enhanced BMD gains in the treatment of postmenopausal women with osteoporosis. Osteoporos Int. 2013;24:1503–11.

    Article  Google Scholar 

  42. Henriksen K, Andersen JR, Riis BJ, Mehta N, Tavakkol R, Alexandersen P, et al. Evaluation of the efficacy, safety and pharmacokinetic profile of oral recombinant human parathyroid hormone [rhPTH(1–31)NH(2)] in postmenopausal women with osteoporosis. Bone. 2013;53:160–6.

    Article  Google Scholar 

  43. Mansjur K, Kuroda S, Izawa T, Maeda Y, Sato M, Watanabe K, et al. The effectiveness of human parathyroid hormone and low-intensity pulsed ultrasound on the fracture healing in osteoporotic bones. Ann Biomed Eng. 2016;44(8):2480.

    Article  Google Scholar 

  44. Angle SR, Sena K, Sumner DR, Virkus WW, Virdi AS. Combined use of low-intensity pulsed ultrasound and rhBMP-2 to enhance bone formation in a rat model of critical size defect. J Orthop Trauma. 2014;28:605–11.

    Article  Google Scholar 

  45. Bashardoust Tajali S, Houghton P, MacDermid JC, Grewal R. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2012;91:349–67.

    Article  Google Scholar 

  46. Emami A, Petrén-Mallmin M, Larsson S. No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma. 1999;13:252–7.

    Article  Google Scholar 

  47. Busse JW, Bhandari M, Einhorn TA, Schemitsch E, Heckman JD, Tornetta P 3rd, et al. Re-evaluation of low intensity pulsed ultrasound in treatment of tibial fractures (TRUST): randomized clinical trial. BMJ. 2016;355:i5351.

    PubMed  PubMed Central  Google Scholar 

  48. Handolin L, Kiljunen V, Arnala I. No long-term effects of ultrasound therapy on bioabsorbable screw-fixed lateral malleolar fracture. Scand J Surg. 2005;94:239–42.

    Article  Google Scholar 

  49. Rue JP, Armstrong DW 3rd, Frassica FJ, Deafenbaugh M, Wickens JH. The effect of pulsed ultrasound in the treatment of tibial stress fractures. Orthopedics. 2004;27:1192–5.

    PubMed  Google Scholar 

  50. Dalla-Bona D, Tanaka E, Oka H, Yamano E, Kawai N, Miyauchi M, et al. Effects of ultrasound on cementoblast metabolism in vitro. Ultrasound Med Biol. 2006;32:943–8.

    Article  Google Scholar 

  51. Antich PP, Mehta S. Ultrasound critical-angle reflectometry (UCR): a new modality for functional elastometric imaging. Phys Med Biol. 1997;42:1763–77.

    Article  Google Scholar 

  52. Mehta S, Antich PP. Measurement of shear-wave velocity by ultrasound critical angle reflectometry (UCR). Ultrasound Med Biol. 1997;23:1123–6.

    Article  Google Scholar 

  53. Chung SL, Pounder NM, de Ana FJ, Qin L, Sui Leung K, Cheung WH. Fracture healing enhancement with low intensity pulsed ultrasound at a critical application angle. Ultrasound Med Biol. 2011;37:1120–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansjur, K., Tanaka, E. (2018). Application of LIPUS for Bone Healing. In: El-Bialy, T., Tanaka, E., Aizenbud, D. (eds) Therapeutic Ultrasound in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66323-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66323-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66322-7

  • Online ISBN: 978-3-319-66323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics