Skip to main content

Mechanisms of LIPUS on Dentofacial Bioengineering

  • Chapter
  • First Online:
  • 443 Accesses

Abstract

LIPUS has been used by various people who have bone fracture as the instrument of treatment. However, the mechanism of LIPUS has been still elusive. In this chapter, the biological mechanism of LIPUS is described. Furthermore, in oral and maxillofacial region, structures of tissues and organs are very unique and complex in their development and function. This complexity makes difficult for their tissue engineering. Interestingly, mostly dentofacial diseases are implicated by inflammation. In this chapter, cellular or molecular biological mechanism of LIPUS, biological problems in dentofacial bioengineering, and also possibilities of dentofacial bioengineering and anti-inflammatory effects are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ito A, Aoyama T, Yamaguchi S, Zhang X, Akiyama H, Kuroki H. Low-intensity pulsed ultrasound inhibits messenger RNA expression of matrix metalloproteinase-13 induced by interleukin-1β in chondrocytes in an intensity-dependent manner. Ultrasound Med Biol. 2012;38(10):1726–33. https://doi.org/10.1016/j.ultrasmedbio.2012.06.005.

    Article  PubMed  Google Scholar 

  2. Takayama T, et al. Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells. Life Sci. 2007;80(10):965–71.

    Article  Google Scholar 

  3. Manaka S, et al. Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells. FEBS Lett. 2015;589(3):310–8.

    Article  Google Scholar 

  4. Yang RS, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone. 2005;36(2):276–83.

    Article  Google Scholar 

  5. Nakao J, et al. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation. Bone. 2014;58:17–25.

    Article  Google Scholar 

  6. Kokubu T, et al. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun. 1999;256(2):284–7.

    Article  Google Scholar 

  7. Nagao M, et al. LIPUS suppressed LPS-induced IL-1alpha through the inhibition of NF-kappaB nuclear translocation via AT1-PLCbeta pathway in MC3T3-E1. J Cell Physiol. 2017;232(12). https://doi.org/10.1002/jcp.25777

    Article  Google Scholar 

  8. Iwabuchi Y, et al. Effects of low-intensity pulsed ultrasound on the expression of cyclooxygenase-2 in mandibular condylar chondrocytes. J Oral Facial Pain Headache. 2014;28(3):261–8.

    Article  Google Scholar 

  9. Kusuyama J, et al. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem. 2014;289(15):10330–44.

    Article  Google Scholar 

  10. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25(21):5071–82.

    Article  Google Scholar 

  11. Panupinthu N, et al. P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid. J Biol Chem. 2007;282(5):3403–12.

    Article  Google Scholar 

  12. Li J, et al. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem. 2005;280(52):42952–9.

    Article  Google Scholar 

  13. Ke HZ, et al. Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol. 2003;17(7):1356–67.

    Article  Google Scholar 

  14. Nakano Y, Addison WN, Kaartinen MT. ATP-mediated mineralization of MC3T3-E1 osteoblast cultures. Bone. 2007;41(4):549–61.

    Article  Google Scholar 

  15. Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol. 2003;4(2):140–56.

    Article  Google Scholar 

  16. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20(5):953–70.

    Article  Google Scholar 

  17. Zou Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6(6):499–506.

    Article  Google Scholar 

  18. De Mello WC. Mechanical stretch reduces the effect of angiotensin II on potassium current in cardiac ventricular cells of adult Sprague Dawley rats. On the role of AT1 receptors as mechanosensors. J Am Soc Hypertens. 2012;6(6):369–74.

    Article  Google Scholar 

  19. Lee SY, et al. Low-intensity pulsed ultrasound enhances BMP-7-induced osteogenic differentiation of human fracture hematoma-derived progenitor cells in vitro. J Orthop Trauma. 2013;27(1):29–33.

    Article  Google Scholar 

  20. Miyasaka M, et al. Low-intensity pulsed ultrasound stimulation enhances heat-shock protein 90 and mineralized nodule formation in mouse calvaria-derived osteoblasts. Tissue Eng Part A. 2015;21(23–24):2829–39.

    Article  Google Scholar 

  21. Gebauer D, et al. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol. 2005;31(10):1391–402.

    Article  Google Scholar 

  22. Harrison A, et al. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics. 2016;70:45–52.

    Article  Google Scholar 

  23. Nolte PA, et al. Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma. 2001;51(4):693–702. discussion 702–3

    Article  Google Scholar 

  24. Roussignol X, et al. Indications and results for the exogen ultrasound system in the management of non-union: a 59-case pilot study. Orthop Traumatol Surg Res. 2012;98(2):206–13.

    Article  Google Scholar 

  25. Warden SJ, et al. Acceleration of fresh fracture repair using the sonic accelerated fracture healing system (SAFHS): a review. Calcif Tissue Int. 2000;66(2):157–63.

    Article  Google Scholar 

  26. Suzuki N, et al. Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: fish scales are a suitable model for the analysis of bone metabolism by ultrasound. Comp Biochem Physiol A Mol Integr Physiol. 2016;195:26–31.

    Article  Google Scholar 

  27. Bandow K, et al. Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin II type 1 receptor. J Cell Physiol. 2007;211(2):392–8.

    Article  Google Scholar 

  28. El-Bialy T, et al. The effect of low intensity pulsed ultrasound in a 3D ex vivo orthodontic model. J Dent. 2011;39(10):693–9.

    Article  Google Scholar 

  29. Lu H, et al. The effect of low-intensity pulsed ultrasound on bone-tendon junction healing: Initiating after inflammation stage. J Orthop Res. 2016;34(10):1697–706.

    Article  Google Scholar 

  30. Korstjens CM, et al. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro. Med Biol Eng Comput. 2008;46(12):1263–70.

    Article  Google Scholar 

  31. Li X, et al. Effect of low-intensity pulsed ultrasound on MMP-13 and MAPKs signaling pathway in rabbit knee osteoarthritis. Cell Biochem Biophys. 2011;61(2):427–34.

    Article  Google Scholar 

  32. Xia P, et al. Low-intensity pulsed ultrasound affects chondrocyte extracellular matrix production via an integrin-mediated p38 MAPK signaling pathway. Ultrasound Med Biol. 2015;41(6):1690–700.

    Article  Google Scholar 

  33. Ji JB, et al. Effect of low intensity pulsed ultrasound on expression of TIMP-2 in serum and expression of mmp-13 in articular cartilage of rabbits with knee osteoarthritis. Asian Pac J Trop Med. 2015;8(12):1043–8.

    Article  Google Scholar 

  34. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008;87(4):296–307.

    Article  Google Scholar 

  35. Carlsson GE. Epidemiology and treatment need for temporomandibular disorders. J Orofac Pain. 1999;13(4):232–7.

    Google Scholar 

  36. Zarb GA, Carlsson GE. Temporomandibular disorders: osteoarthritis. J Orofac Pain. 1999;13(4):295–306.

    PubMed  Google Scholar 

  37. D’Errico JA, et al. Immortalized cementoblasts and periodontal ligament cells in culture. Bone. 1999;25(1):39–47.

    Article  Google Scholar 

  38. Yoon JH, et al. Introducing pulsed low-intensity ultrasound to culturing human umbilical cord-derived mesenchymal stem cells. Biotechnol Lett. 2009;31(3):329–35.

    Article  Google Scholar 

  39. Kim BC, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18(3):235–44.

    Article  Google Scholar 

  40. Lei M, et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials. 2014;35(24):6332–43.

    Article  Google Scholar 

  41. Yang KC, et al. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med. 2012;6(10):777–85.

    Article  Google Scholar 

  42. Henry PJ. Tooth loss and implant replacement. Aust Dent J. 2000;45(3):150–72.

    Article  Google Scholar 

  43. Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin North Am. 2006;50(2):191–203. viii

    Article  Google Scholar 

  44. Duailibi MT, et al. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res. 2004;83(7):523–8.

    Article  Google Scholar 

  45. Honda MJ, et al. Tooth-forming potential in embryonic and postnatal tooth bud cells. Med Mol Morphol. 2008;41(4):183–92.

    Article  Google Scholar 

  46. Ohara T, et al. Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A. 2010;94(3):800–5.

    PubMed  Google Scholar 

  47. Sumita Y, et al. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials. 2006;27(17):3238–48.

    Article  Google Scholar 

  48. Gronthos S, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5.

    Article  Google Scholar 

  49. Gronthos S, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97(25):13625–30.

    Article  Google Scholar 

  50. Aoyama J, et al. Immunolocalization of vascular endothelial growth factor in rat condylar cartilage during postnatal development. Histochem Cell Biol. 2004;122(1):35–40.

    Article  Google Scholar 

  51. Fujisawa T, et al. A repetitive, steady mouth opening induced an osteoarthritis-like lesion in the rabbit temporomandibular joint. J Dent Res. 2003;82(9):731–5.

    Article  Google Scholar 

  52. Tanaka E, et al. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem Cell Biol. 2005;123(3):275–81.

    Article  Google Scholar 

  53. Singh M, Detamore MS. Tensile properties of the mandibular condylar cartilage. J Biomech Eng. 2008;130(1):011009.

    Article  Google Scholar 

  54. Angle SR, et al. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics. 2011;51(3):281–8.

    Article  Google Scholar 

  55. Azuma Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16(4):671–80.

    Article  Google Scholar 

  56. El-Bialy T, et al. Ultrasound effect on neural differentiation of gingival stem/progenitor cells. Ann Biomed Eng. 2014;42(7):1406–12.

    Article  Google Scholar 

  57. Al-Daghreer S, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs. Ultrasound Med Biol. 2014;40(6):1187–96.

    Article  Google Scholar 

  58. Nakamura T, et al. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann Biomed Eng. 2011;39(12):2964–71.

    Article  Google Scholar 

  59. Young SR, Dyson M. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol. 1990;16(3):261–9.

    Article  Google Scholar 

  60. Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol. 2009;35(4):529–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsuko Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanabe, N., Yasue, A., Tanaka, E. (2018). Mechanisms of LIPUS on Dentofacial Bioengineering. In: El-Bialy, T., Tanaka, E., Aizenbud, D. (eds) Therapeutic Ultrasound in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66323-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66323-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66322-7

  • Online ISBN: 978-3-319-66323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics