Skip to main content

Penalty Function Based Critical Point Approach to Compute Real Witness Solution Points of Polynomial Systems

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10490))

Included in the following conference series:

Abstract

We present a critical point method based on a penalty function for finding certain solution (witness) points on real solutions components of general real polynomial systems. Unlike other existing numerical methods, the new method does not require the input polynomial system to have pure dimension or satisfy certain regularity conditions.

This method has two stages. In the first stage it finds approximate solution points of the input system such that there is at least one real point on each connected solution component. In the second stage it refines the points by a homotopy continuation or traditional Newton iteration. The singularities of the original system are removed by embedding it in a higher dimensional space.

In this paper we also analyze the convergence rate and give an error analysis of the method. Experimental results are also given and shown to be in close agreement with the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubry, P., Rouillier, F., El Din, M.S.: Real solving for positive dimensional systems. J. Symb. Comput. 34(6), 543–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Heidelberg (2006). doi:10.1007/3-540-33099-2

    MATH  Google Scholar 

  3. Besana, G.M., DiRocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Cell decomposition of almost smooth real algebraic surfaces. Numer. Algorithms 63(4), 645–678 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  5. Bank, B., Giusti, M., Heintz, J.: Point searching in real singular complete intersection varieties - algorithms of intrinsic complexity. Math. Comput. 83(286), 873–897 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bank, B., Giusti, M., Heintz, J., Mbakop, G.-M.: Polar varieties, real equation solving, and data structures: the hypersurface case. J. Complex. 13, 5–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brake, D.A., Hauenstein, J.D., Liddell, A.C.: Numerically validating the completeness of the real solution set of a system of polynomial equations. ISSAC 2016, 143–150 (2016)

    MATH  Google Scholar 

  8. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with the Software Package Bertini. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  10. Beltrán, C., Leykin, A.: Robust Certified Numerical Homotopy Tracking. Found. Comput. Math. 13(2), 253–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Basu, S., Roy, M.-F., El Din, M.S., Schost, É.: A baby step-giant step roadmap algorithm for general algebraic sets. Found. Comput. Math. 14(6), 1117–1172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). doi:10.1007/3-540-07407-4_17

    Google Scholar 

  14. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comp. 5, 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hauenstein, J.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hauenstein, J., Sommese, A.: What is numerical algebraic geometry? J. Symb. Comp. 79, 499–507 (2017). Part 3

    Article  MathSciNet  MATH  Google Scholar 

  17. Hong, H.: Improvement in CAD-Based Quantifier Elimination. Ph.D. thesis. Ohio State University, Columbus, Ohio (1990)

    Google Scholar 

  18. Li, T.Y., Lee, T.L.: Homotopy method for solving Polynomial Systems software. http://www.math.msu.edu/~li/Software.htm

  19. Lee, J.M.: Introduction to Smooth Manifolds, vol. 218. Springer, Heidelberg (2003). doi:10.1007/978-0-387-21752-9

    Google Scholar 

  20. Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of zero-dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lasserre, J.B., Laurent, M., Rostalski, P.: A prolongation-projection algorithm for computing the finite real variety of an ideal. Theoret. Comput. Sci. 410(27–29), 2685–2700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, Y.: Finding all real solutions of polynomial systems. Ph.D thesis. University of Notre Dame (2006). Results of this thesis appear. In: (with Bates, D.J., Sommese, A.J., Wampler, C.W.), Finding all real points of a complex curve, Contemp. Math. vol. 448, pp. 183–205 (2006)

    Google Scholar 

  23. Ma, Y., Zhi, L.: Computing Real Solutions of Polynomial Systems via Low-rank Moment Matrix Completion. In: ISSAC, pp. 249–256 (2012)

    Google Scholar 

  24. Rouillier, F., Roy, M.-F., El Din, M.S.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. El Din, M.S., Schost, É.: Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: ISSAC 2013, pp. 224–231 (2003)

    Google Scholar 

  26. El Din, M.S., Schost, É.: Properness defects of projection functions and computation of at least one point in each connected component of a real algebraic set. J. Discrete Comput. Geom. 32(3), 417–430 (2004)

    MATH  Google Scholar 

  27. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Press (2005)

    Google Scholar 

  28. Stewart, G.W.: Perturbation theory for the singular value decomposition. In: SVD and Signal processing, II: Algorithms, Analysis and Applications, pp. 99–109. Elsevier (1990)

    Google Scholar 

  29. Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical algebraic geometry. In: Bronstein, M., et al. (eds.) Solving Polynomial Equations. AACIM, vol. 14, pp. 339–392. Springer, Heidelberg (2005). doi:10.1007/3-540-27357-3_8

    Chapter  Google Scholar 

  30. Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  31. Wu, W., Reid, G.: Finding points on real solution components and applications to differential polynomial systems. In: ISSAC, pp. 339–346 (2013)

    Google Scholar 

  32. Wu, W., Reid, G., Feng, Y.: Computing real witness points of positive dimensional polynomial systems. Accepted by Theoretical Computer Sciences (2017). http://doi.org/10.1016/j.tcs.2017.03.035

  33. Yang, Z., Zhi, L., Zhu, Y.: Verified error bounds for real solutions of positive-dimensional polynomial systems. In: ISSAC, pp. 371–378 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments that greatly helped improving the paper. This work is partially supported by the projects NSFC (11471307, 11671377, 61572024), cstc2015jcyjys40001, and the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SYS026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changbo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, W., Chen, C., Reid, G. (2017). Penalty Function Based Critical Point Approach to Compute Real Witness Solution Points of Polynomial Systems. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2017. Lecture Notes in Computer Science(), vol 10490. Springer, Cham. https://doi.org/10.1007/978-3-319-66320-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66320-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66319-7

  • Online ISBN: 978-3-319-66320-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics