Skip to main content

Symbolic-Numeric Integration of the Dynamical Cosserat Equations

  • Conference paper
  • First Online:
Book cover Computer Algebra in Scientific Computing (CASC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10490))

Included in the following conference series:

Abstract

We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \(\alpha \)-method illustrating the computational efficiency of our approach for problems in structural mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107. Springer, Heidelberg (1995). doi:10.1007/0-387-27649-1

    MATH  Google Scholar 

  2. Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6(4), 041004 (2011)

    Article  Google Scholar 

  3. Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)

    Article  MATH  Google Scholar 

  4. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

    MATH  Google Scholar 

  6. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  7. Hilfinger, A.: Dynamics of cilia and flagella. Ph.D. thesis, Technische Universität Dresden (2006)

    Google Scholar 

  8. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ibragimov, N.H.: A Practical Course in Differential Equations and Mathematical Modelling. Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles. Higher Education Press/World Scientific, Beijing (2009)

    Book  Google Scholar 

  10. Lang, H., Linn, J., Arnold, M.: Multibody Dynamics Simulation of Geometrically Exact Cosserat Rods. Berichte des Fraunhofer ITWM, vol. 209. Fraunhofer, Munich (2011)

    MATH  Google Scholar 

  11. Luo, A.C.J.: Nonlinear Deformable-Body Dynamics. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12136-4

    Book  MATH  Google Scholar 

  12. Michels, D.L., Desbrun, M.: A semi-analytical approach to molecular dynamics. J. Comput. Phys. 303, 336–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Michels, D.L., Lyakhov, D.A., Gerdt, V.P., Sobottka, G.A., Weber, A.G.: Lie symmetry analysis for cosserat rods. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 324–334. Springer, Cham (2014). doi:10.1007/978-3-319-10515-4_23

    Google Scholar 

  14. Michels, D.L., Lyakhov, D.A., Gerdt, V.P., Hossain, Z., Riedel-Kruse, I.H., Weber, A.G.: On the general analytical solution of the Kinematic Cosserat equations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 367–380. Springer, Cham (2016). doi:10.1007/978-3-319-45641-6_24

    Chapter  Google Scholar 

  15. Michels, D.L., Mueller, J.P.T., Sobottka, G.: A physically based approach to the accurate simulation of stiff fibers and stiff fiber meshes. Comput. Graph. 53B, 136–146 (2015)

    Article  Google Scholar 

  16. Michels, D.L., Sobottka, G.A., Weber, A.G.: Exponential integrators for stiff elastodynamic problems. ACM Trans. Graph. 33, 7:1–7:20 (2014)

    Article  MATH  Google Scholar 

  17. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107, 2nd edn. Springer, Heidelberg (1993). doi:10.1007/978-1-4684-0274-2

    Book  MATH  Google Scholar 

  18. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  19. Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2010). doi:10.1007/978-3-642-01287-7

    Book  MATH  Google Scholar 

  20. Sobottka, G.A., Lay, T., Weber, A.G.: Stable integration of the dynamic Cosserat equations with application to hair modeling. J. WSCG 16, 73–80 (2008)

    Google Scholar 

  21. Wood, W.L., Bossak, M., Zienkiewicz, O.C.: An alpha modification of Newmarks method. Int. J. Numer. Methods Eng. 15, 1562–1566 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the insightful comments of the anonymous referees. This work has been partially supported by the King Abdullah University of Science and Technology (KAUST baseline funding), the Max Planck Center for Visual Computing and Communication (MPC-VCC) funded by Stanford University and the Federal Ministry of Education and Research of the Federal Republic of Germany (BMBF grants FKZ-01IMC01 and FKZ-01IM10001), the Russian Foundation for Basic Research (grant 16-01-00080) and the Ministry of Education and Science of the Russian Federation (agreement 02.a03.21.0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Lyakhov .

Editor information

Editors and Affiliations

A Generalized \(\alpha \)-Method

A Generalized \(\alpha \)-Method

In this appendix, we briefly explain the application of the generalized \(\alpha \)-method for the common case of a system described by the standard equation from structural mechanics,

$$\begin{aligned} \varvec{M}\ddot{\varvec{x}}+\varvec{D}\dot{\varvec{x}}+\varvec{K}\varvec{x}+\varvec{\varLambda }(t)=\varvec{0}, \end{aligned}$$
(13)

in which \(\varvec{M}\), \(\varvec{D}\), and \(\varvec{K}\) denote the mass, damping, and stiffness matrices. The time-dependent displacement vector is given by \(\varvec{x}(t)\), and its first- and second-order temporal derivatives describe velocity and acceleration. The vector \(\varvec{\varLambda }(t)\) describes external forces acting on the system at time t. We are searching for functions \(\varvec{x}(t)\), \(\varvec{\upsilon }(t)=\dot{\varvec{x}}(t)\), and \(\varvec{a}(t)=\ddot{\varvec{x}}(t)\) satisfying (13) for all t with initial conditions \(\varvec{x}(t_0)=\varvec{x}_0\) and \(\varvec{\upsilon }(t_0)=\varvec{\upsilon }_0\).

For the employment of the generalized \(\alpha \)-method, we can write the integration scheme with respect to (13) as follows:

$$ \varvec{M}\varvec{a}_{1-\alpha _m}+\varvec{D}\varvec{x}_{1-\alpha _f}+\varvec{K}\varvec{x}_{1-\alpha _f}+\varvec{\varLambda }(t_{1-\alpha _f})=\varvec{0}, $$

with the substitution rule \((\cdot )_{1-\alpha }:=(1-\alpha )(\cdot )_i+\alpha (\cdot )_{i-1}\) and the approximations

$$\begin{aligned} \varvec{x}_i=\varvec{x}_{i-1}+\varDelta t\varvec{v}_{i-1}+\varDelta t^2\left( \left( \frac{1}{2}-\alpha \right) \varvec{a}_{i-1}+\beta \varvec{a}_i\right) ,\\ \varvec{\upsilon }_i=\varvec{\upsilon }_{i-1}+\varDelta t\left( \left( 1-\gamma \right) \varvec{a}_{i-1}+\gamma \varvec{a}_i\right) . \end{aligned}$$

The parameters \(\alpha _m\), \(\alpha _f\), \(\gamma \), and \(\beta \) are integration coefficients.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lyakhov, D.A., Gerdt, V.P., Weber, A.G., Michels, D.L. (2017). Symbolic-Numeric Integration of the Dynamical Cosserat Equations. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2017. Lecture Notes in Computer Science(), vol 10490. Springer, Cham. https://doi.org/10.1007/978-3-319-66320-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66320-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66319-7

  • Online ISBN: 978-3-319-66320-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics