Skip to main content

Linear Differential Systems with Infinite Power Series Coefficients (Invited Talk)

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10490))

Included in the following conference series:

  • 588 Accesses

Abstract

Infinite power series may appear as inputs for certain mathematical problems. This paper examines two possible solutions to the problem of representation of infinite power series: the algorithmic representation (for each series, an algorithm is specified that, given an integer i, finds the coefficient of \(x^i\), — any such algorithm defines a so called computable, or constructive, series) and a representation in an approximate form, namely, in a truncated form.

S.A. Abramov—Supported in part by the Russian Foundation for Basic Research, project No. 16-01-00174.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, S.: EG-eliminations. J. Differ. Eqn. Appl. 5, 393–433 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramov, S.: On ramification indices of formal solutions of constructive linear ordinary differential systems. J. Symbolic Comput. 79, 475–481 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramov, S.A., Barkatou, M.A.: Computable infinite power series in the role of coefficients of linear differential systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 1–12. Springer, Cham (2014). doi:10.1007/978-3-319-10515-4_1

    Google Scholar 

  4. Abramov, S., Barkatou, M.: On strongly non-singular polynomial matrices. In: Schneider, C., Zima, E. (eds.) Advances in Computer Algebra: Proceedings of the Waterloo Workshop in Computer Algebra 2016. Springer, Heidelberg (2017, accepted)

    Google Scholar 

  5. Abramov, S., Barkatou, M., Khmelnov, D.: On full rank differential systems with power series coefficients. J. Symbolic Comput. 68, 120–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abramov, S.A., Barkatou, M.A., Pflügel, E.: Higher-order linear differential systems with truncated coefficients. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 10–24. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23568-9_2

    Chapter  Google Scholar 

  7. Abramov, S., Bronstein, M.: Linear algebra for skew-polynomial matrices. Rapport de Recherche INRIA RR-4420 (2002). http://www.inria.fr/RRRT/RR-4420.html

  8. Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems with power series coefficients. Program. Comput. Softw. 40(2), 98–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abramov, S.A., Ryabenko, A.A., Khmelnov, D.E.: Procedures for searching local solutions of linear differential systems with infinite power series in the role of coefficients. Program. Comput. Softw. 42(2), 55–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barkatou, M., Pflügel, E.: An algorithm computing the regular formal solutions of a system of linear differential equations. J. Symbolic Comput. 28, 569–588 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of skew polynomials. In: Proceedings of the ISSAC 2002, pp. 8–15. ACM, New York (2002)

    Google Scholar 

  12. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  13. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations. Math. Ann. 267, 213–238 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koepf, W.: Power series in computer algebra. J. Symbolic Comput. 13, 581–603 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koepf, W.: Computeralgebra. Eine algorithmisch orientierte Einführung. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  16. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for singular differential equations. Linear Algebra Appl. 72, 1–46 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maple online help. http://www.maplesoft.com/support/help/

  18. Pflügel, E.: Effective formal reduction of linear differential systems. Appl. Algebra Eng. Commun. Comput. 10(2), 153–187 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. van der Put, M., Singer, M.F.: Galois Theory of Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  20. Ryabenko, A.A.: On exponential-logarithmic solutions of linear differential systems with power series coefficients. Program. Comput. Softw. 41(2), 112–118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Turing, A.: On computable numbers, with an application to the Entscheidungs-problem. Proc. Lond. Math. Soc. Ser. 2 42, 230–265 (1936)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is thankful to M. Barkatou, D. Khmelnov, M. Petkovšek, E. Pflügel, A. Ryabenko and M. Singer for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Abramov, S.A. (2017). Linear Differential Systems with Infinite Power Series Coefficients (Invited Talk). In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2017. Lecture Notes in Computer Science(), vol 10490. Springer, Cham. https://doi.org/10.1007/978-3-319-66320-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66320-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66319-7

  • Online ISBN: 978-3-319-66320-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics