Skip to main content

Tunable Magnetic Damping in Ferromagnetic/Non-magnetic Bilayer Films

  • Chapter
  • First Online:
Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Abstract

With the advancement in the methods for thin film deposition, tailoring of magnetic properties of thin ferromagnetic layer by using a neighboring layer has gained attention of researchers. From the perspective of fundamental understanding, the role of interface in different bilayer and multilayer systems has been an intense area of investigation. Utilizing the additional tunable properties originating from the interface has been foreseen as a route to improve the performance of numerous devices in application. In this chapter, the important aspect of magnetic damping in ferromagnetic/non-magnetic (FM/NM) bilayer films with primary focus on the recent experimental results is presented. Before describing various cases, we discuss two important mechanisms involved in FM/NM bilayer system, namely spin pumping and interfacial d-d hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hoffmann A, Bader SD (2015) Opportunities at the frontiers of spintronics. Phys Rev Appl 4(4):047001. doi:10.1103/PhysRevApplied.4.047001

    Article  Google Scholar 

  2. Kruglyak VV, Demokritov SO, Grundler D (2010) Magnonics. J Phys D Appl Phys 43(26):260301. doi:10.1088/0022-3727/43/26/260301

    Article  Google Scholar 

  3. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54(13):9353–9358. doi:10.1103/PhysRevB.54.9353

    Article  Google Scholar 

  4. Brataas A, Tserkovnyak Y, Bauer GEW, Halperin BI (2002) Spin battery operated by ferromagnetic resonance. Phys Rev B 66(6):060404. doi:10.1103/PhysRevB.66.060404

    Article  Google Scholar 

  5. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40(6):3443–3449. doi:10.1109/tmag.2004.836740

    Article  Google Scholar 

  6. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev B 66(22):224403. doi:10.1103/PhysRevB.66.224403

    Article  Google Scholar 

  7. Mizukami S, Ando Y, Miyazaki T (2001) Ferromagnetic resonance linewidth for NM/80NiFe/NM films (NM = Cu, Ta, Pd and Pt). J Magn Magn Mater 226–230, Part 2, 1640–1642. doi:10.1016/S0304-8853(00)01097-0

  8. Mizukami S, Ando Y, Miyazaki T (2001) The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) films. Jpn J Appl Phys 40(2A):580–585. doi:10.1143/jjap.40.580

    Article  Google Scholar 

  9. Mizukami S, Ando Y, Miyazaki T (2002) Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys Rev B 66(10):104413. doi:10.1103/PhysRevB.66.104413

    Article  Google Scholar 

  10. Kamberský V (1976) On ferromagnetic resonance damping in metals. Czech J Phys B 26(12):1366–1383. doi:10.1007/bf01587621

    Article  Google Scholar 

  11. Nakajima N, Koide T, Shidara T, Miyauchi H, Fukutani H, Fujimori A, Iio K, Katayama T, Nývlt M, Suzuki Y (1998) Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: magnetic circular x-ray dichroism study. Phys Rev Lett 81(23):5229–5232. doi:10.1103/PhysRevLett.81.5229

    Article  Google Scholar 

  12. Pal S, Rana B, Hellwig O, Thomson T, Barman A (2011) Tunable magnonic frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness. Appl Phys Lett 98(8):082501. doi:10.1063/1.3559222

    Article  Google Scholar 

  13. Mizukami S, Sajitha EP, Watanabe D, Wu F, Miyazaki T, Naganuma H, Oogane M, Ando Y (2010) Gilbert damping in perpendicularly magnetized Pt/Co/Pt films investigated by all-optical pump-probe technique. Appl Phys Lett 96(15):152502. doi:10.1063/1.3396983

    Article  Google Scholar 

  14. Lagae L, Wirix-Speetjens R, Eyckmans W, Borghs S, De Boeck J (2005) Increased Gilbert damping in spin valves and magnetic tunnel junctions. J Magn Magn Mater 286:291–296. doi:10.1016/j.jmmm.2004.09.083

    Article  Google Scholar 

  15. Rantschler JO, Maranville BB, Mallett JJ, Chen P, McMichael RD, Egelhoff WF (2005) Damping at normal metal/permalloy interfaces. IEEE Trans Magn 41(10):3523–3525. doi:10.1109/tmag.2005.854956

    Article  Google Scholar 

  16. Gerrits T, Schneider ML, Silva TJ (2006) Enhanced ferromagnetic damping in Permalloy∕Cu bilayers. J Appl Phys 99(2):023901. doi:10.1063/1.2159076

    Article  Google Scholar 

  17. Marcham MK, Yu W, Keatley PS, Shelford LR, Shafer P, Cavill SA, Qing H, Neudert A, Childress JR, Katine JA, Arenholz E, Telling ND, Laan GVD, Hicken RJ (2013) Influence of a Dy overlayer on the precessional dynamics of a ferromagnetic thin film. Appl Phys Lett 102(6):062418. doi:10.1063/1.4792740

    Article  Google Scholar 

  18. Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson RM, Sinha J, Hindmarch AT, Barman A, Atkinson D (2016) Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness. Phys Rev B 93(5):054402. doi:10.1103/PhysRevB.93.054402. Publisher’s note, Phys Rev B 93(21):219902. doi:10.1103/PhysRevB.93.219902

    Article  Google Scholar 

  19. Barati E, Cinal M, Edwards DM, Umerski A (2014) Gilbert damping in magnetic layered systems. Phys Rev B 90(1) (2014). doi:10.1103/PhysRevB.90.014420

  20. Woltersdorf G, Heinrich B (2004) Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Phys Rev B 69(18):184417. doi:10.1103/PhysRevB.69.184417

    Article  Google Scholar 

  21. Heinrich B, Bland JAC (2005) Spin relaxation in magnetic metallic layers and multilayers. In: Bland JAC (ed) Ultrathin magnetic structures: fundamentals of nanomagnetism, vol 3. Springer, New York

    Chapter  Google Scholar 

  22. Heinrich B, Urban R, Woltersdorf G (2002) Magnetic relaxations in metallic multilayers. IEEE Trans Magn 38(5):2496–2501. doi:10.1109/tmag.2002.801906

    Article  Google Scholar 

  23. Geissler J, Goering E, Justen M, Weigand F, Schütz G, Langer J, Schmitz D, Maletta H, Mattheis R (2001) Pt magnetization profile in a Pt/Co bilayer studied by resonant magnetic x-ray reflectometry. Phys Rev B 65(2):020405. doi:10.1103/PhysRevB.65.020405

    Article  Google Scholar 

  24. Suzuki M, Muraoka H, Inaba Y, Miyagawa H, Kawamura N, Shimatsu T, Maruyama H, Ishimatsu N, Isohama Y, Sonobe Y (2005) Depth profile of spin and orbital magnetic moments in a subnanometer Pt film on Co. Phys Rev B 72(5):054430 doi: 10.1103/PhysRevB.72.054430

  25. Bailey W, Kabos P, Mancoff F, Russek S (2001) Control of magnetization dynamics in Ni81Fe19 thin films through the use of rare-earth dopants. IEEE Trans Magn 37(4):1749–1754. doi:10.1109/20.950957

    Article  Google Scholar 

  26. Fu Y, Sun L, Wang JS, Bai XJ, Kou ZX, Zhai Y, Du J, Wu J, Xu YB, Lu HX, Zhai HR (2009) Magnetic properties of (Ni83Fe17)1–xGdx thin films with diluted Gd doping. IEEE Trans Magn 45(10):4004–4007. doi:10.1109/tmag.2009.2024164

    Article  Google Scholar 

  27. Fassbender J, Ravelosona D, Samson Y (2004) Tailoring magnetism by light-ion irradiation. J Phys D Appl Phys 37(16):R179. doi:10.1088/0022-3727/37/16/R01

    Article  Google Scholar 

  28. Fassbender J, McCord J (2006) Control of saturation magnetization, anisotropy, and damping due to Ni implantation in thin Ni81Fe19 layers. Appl Phys Lett 88(25):252501. doi:10.1063/1.2213948

    Article  Google Scholar 

  29. Ganguly A, Azzawi S, Saha S, King JA, Rowan-Robinson RM, Hindmarch AT, Sinha J, Atkinson D, Barman A (2015) Tunable magnetization dynamics in interfacially modified Ni81Fe19/Pt bilayer thin film microstructures. Sci Rep 5:17596. doi:10.1038/srep17596

    Article  Google Scholar 

  30. King JA, Ganguly A, Burn DM, Pal S, Sallabank EA, Hase TPA, Hindmarch AT, Barman A, Atkinson D (2014) Local control of magnetic damping in ferromagnetic/non-magnetic bilayers by interfacial intermixing induced by focused ion-beam irradiation. Appl Phys Lett 104(24):242410. doi:10.1063/1.4883860

    Article  Google Scholar 

  31. Arac E, Burn DM, Eastwood DS, Hase TPA, Atkinson D (2012) Study of focused-ion-beam-induced structural and compositional modifications in nanoscale bilayer systems by combined grazing incidence x ray reflectivity and fluorescence. J Appl Phys 111(4):044324. doi:10.1063/1.3689016

    Article  Google Scholar 

  32. Burn DM, Hase TPA, Atkinson D (2014) Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties. J Phys-Condens Matter 26(23):236002. doi:10.1088/0953-8984/26/23/236002

    Article  Google Scholar 

  33. Woltersdorf G, Buess M, Heinrich B, Back CH (2005) Time resolved magnetization dynamics of ultrathin Fe(001) films: spin-pumping and two-magnon scattering. Phys Rev Lett 95(3):037401. doi:10.1103/PhysRevLett.95.037401

    Article  Google Scholar 

  34. Liu L, Moriyama T, Ralph DC, Buhrman RA (2011) Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett 106(3):036601. doi:10.1103/PhysRevLett.106.036601

    Article  Google Scholar 

  35. Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83(9):1834–1837. doi:10.1103/PhysRevLett.83.1834

    Article  Google Scholar 

  36. Demidov VE, Urazhdin S, Edwards ERJ, Stiles MD, McMichael RD, Demokritov SO (2011) Control of magnetic fluctuations by spin current. Phys Rev Lett 107(10):107204. doi:10.1103/PhysRevLett.107.107204

    Article  Google Scholar 

  37. Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO (2012) Magnetic nano-oscillator driven by pure spin current. Nat Mater 11(12):1028–1031. doi:10.1038/nmat3459

    Google Scholar 

  38. Ganguly A, Kondou K, Sukegawa H, Mitani S, Kasai S, Niimi Y, Otani Y, Barman A (2014) Thickness dependence of spin torque ferromagnetic resonance in Co75Fe25/Pt bilayer films. Appl Phys Lett 104(7):072405. doi:10.1063/1.4865425

    Article  Google Scholar 

  39. Ganguly A, Rowan-Robinson RM, Haldar A, Jaiswal S, Sinha J, Hindmarch AT, Atkinson DA, Barman A (2014) Time-domain detection of current controlled magnetization damping in Pt/Ni81Fe19 bilayer and determination of Pt spin Hall angle. Appl Phys Lett 105(11):112409. doi:10.1063/1.4896277

    Article  Google Scholar 

  40. Kasai S, Kondou K, Sukegawa H, Mitani S, Tsukagoshi K, Otani Y (2014) Modulation of effective damping constant using spin Hall effect. Appl Phys Lett 104(9):092408. doi:10.1063/1.4867649

    Article  Google Scholar 

  41. Mondal S, Choudhury S, Jha N, Ganguly A, Sinha J, Barman A (2017) All-optical detection of spin Hall angle in W/CoFeB/SiO2 heterostructures by varying thickness of the tungsten layer. Phys Rev B 96(5):054414. doi:10.1103/PhysRevB.96.054414

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, A., Sinha, J. (2018). Tunable Magnetic Damping in Ferromagnetic/Non-magnetic Bilayer Films. In: Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-66296-1_7

Download citation

Publish with us

Policies and ethics