Skip to main content
  • 1039 Accesses

Abstract

As discussed in previous chapters, in early days, the magnetization dynamics was primarily investigated using high-frequency techniques based on electrical excitation and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jánossy A, Monod P (1976) Investigation of magnetic coupling at the interface of a ferromagnetic and paramagnetic metal by conduction electron spin resonance. Solid State Commun 18(2):203–205. doi:http://dx.doi.org/10.1016/0038-1098(76)91453-8

  2. Silsbee RH, Janossy A, Monod P (1979) Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal-metal interface. Phys Rev B 19(9):4382–4399. doi:10.1103/PhysRevB.19.4382

    Article  Google Scholar 

  3. Grünberg P, Schreiber R, Pang Y, Brodsky MB, Sowers H (1986) Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys Rev Lett 57(19):2442–2445. doi:10.1103/PhysRevLett.57.2442

    Article  Google Scholar 

  4. Baibich MN, Broto JM, Fert A, Vandau FN, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475. doi:10.1103/PhysRevLett.61.2472

    Article  Google Scholar 

  5. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic-structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7):4828–4830. doi:10.1103/PhysRevB.39.4828

    Article  Google Scholar 

  6. Parkin SSP, More N, Roche KP (1990) Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures—Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett 64(19):2304–2307. doi:10.1103/PhysRevLett.64.2304

    Article  Google Scholar 

  7. Parkin SSP, Bhadra R, Roche KP (1991) Oscillatory magnetic exchange coupling through thin copper layers. Phys Rev Lett 66(16):2152–2155. doi:10.1103/PhysRevLett.66.2152

    Article  Google Scholar 

  8. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang S-H (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater 3(12):862–867. doi:10.1038/nmat1256

  9. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3(12):868–871. doi:10.1038/nmat1257

  10. Dieny B, Speriosu VS, Gurney BA, Parkin SSP, Wilhoit DR, Roche KP, Metin S, Peterson DT, Nadimi S (1991) Spin-valve effect in soft ferromagnetic sandwiches. J Magn Magn Mater 93:101–104. doi:10.1016/0304-8853(91)90311-w

    Article  Google Scholar 

  11. Suezawa Y, Gondo Y (1993) Spin-polarized electrons and magnetoresistance in ferromagnetic tunnel-junctions and multilayers. J Magn Magn Mater 126(1–3):524–526. doi:10.1016/0304-8853(93)90677-t

    Article  Google Scholar 

  12. Parkin SSP (1993) Origin of enhanced magnetoresistance of magnetic multilayers—spin-dependent scattering from magnetic interface states. Phys Rev Lett 71(10):1641–1644. doi:10.1103/PhysRevLett.71.1641

    Article  Google Scholar 

  13. Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82(3):2731–2784. doi:https://doi.org/10.1103/RevModPhys.82.2731

    Article  Google Scholar 

  14. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54(13):9353–9358. doi:10.1103/PhysRevB.54.9353

    Article  Google Scholar 

  15. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159(1–2):L1–L7. doi:10.1016/0304-8853(96)00062-5

    Article  Google Scholar 

  16. Tsoi M, Jansen AGM, Bass J, Chiang WC, Seck M, Tsoi V, Wyder P (1998) Excitation of a magnetic multilayer by an electric current. Phys Rev Lett 80(19):4281–4284. doi:10.1103/PhysRevLett.80.4281

    Article  Google Scholar 

  17. Myers EB, Ralph DC, Katine JA, Louie RN, Buhrman RA (1999) Current-induced switching of domains in magnetic multilayer devices. Science 285(5429):867–870. doi:10.1126/science.285.5429.867

    Article  Google Scholar 

  18. Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C, Parkin SSP (2006) Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443(7108):197–200. doi:10.1038/nature05093

    Article  Google Scholar 

  19. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194. doi:10.1126/science.1145799

    Article  Google Scholar 

  20. Hayashi M, Thomas L, Moriya R, Rettner C, Parkin SSP (2008) Current-controlled magnetic domain-wall nanowire shift register. Science 320(5873):209–211. doi:10.1126/science.1154587

    Article  Google Scholar 

  21. Mihai Miron I, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater 9(3):230–234. doi:10.1038/nmat2613

    Google Scholar 

  22. Mihai Miron I, Moore T, Szambolics H, Buda-Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G (2011) Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10(6):419–423. doi:10.1038/nmat3020

    Article  Google Scholar 

  23. Liu L, Pai C-F, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin-torque switching with the giant spin Hall effect of Tantalum. Science 336(6081):555–558. doi:10.1126/science.1218197

    Article  Google Scholar 

  24. Haazen PPJ, Mure E, Franken JH, Lavrijsen R, Swagten HJM, Koopmans B (2013) Domain wall depinning governed by the spin Hall effect. Nat Mater 12(4):299–303. doi:10.1038/nmat3553

    Article  Google Scholar 

  25. Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H (2014) Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat Commun 5:4655. doi:10.1038/ncomms5655

  26. Ralph DC, Stiles MD (2008) Spin transfer torques. J Magn Magn Mater 320(7):1190–1216. doi:http://dx.doi.org/10.1016/j.jmmm.2007.12.019

  27. Slonczewski JC (1999) Excitation of spin waves by an electric current. J Magn Magn Mater 195(2):L261–L268. doi:10.1016/s0304-8853(99)00043-8

    Article  Google Scholar 

  28. Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett 84(14):3149–3152. doi:10.1103/PhysRevLett.84.3149

    Article  Google Scholar 

  29. Kiselev SI, Sankey JC, Krivorotov IN, Emley NC, Schoelkopf RJ, Buhrman RA, Ralph DC (2003) Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425(6956):380–383. doi:10.1038/nature01967

    Article  Google Scholar 

  30. Piraux L, Renard K, Guillemet R, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Antohe VA, Fusil S, Bouzehouane K, Cros V (2007) Template grown NiFe/Cu/NiFe nanowires for spin transfer devices. Nano Lett 7(9):2563–2567. doi:10.1021/nl070263s

    Article  Google Scholar 

  31. Matsumoto R, Fukushima A, Yakushiji K, Yakata S, Nagahama T, Kubota H, Katayama T, Suzuki Y, Ando K, Yuasa S, Georges B, Cros V, Grollier J, Fert A (2009) Spin torque-induced switching and precession in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions. Phys Rev B 80(17):174405. doi:https://doi.org/10.1103/PhysRevB.80.174405

    Article  Google Scholar 

  32. Krivorotov IN, Berkov DV, Gorn NL, Emley NC, Sankey JC, Ralph DC, Buhrman RA (2007) Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves. Phys Rev B 76(2):024418. doi:10.1103/PhysRevB.76.024418

    Article  Google Scholar 

  33. Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel JP, Prejbeanu-Buda L, Cyrille MC, Redon O, Dieny B (2007) Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat Mater 6(6):447–453. doi:10.1038/nmat1905

    Article  Google Scholar 

  34. Thadani KV, Finocchio G, Li ZP, Ozatay O, Sankey JC, Krivorotov IN, Cui YT, Buhrman RA, Ralph DC (2008) Strong linewidth variation for spin-torque nano-oscillators as a function of in-plane magnetic field angle. Phy Rev B 78(2):024409. doi:https://doi.org/10.1103/PhysRevB.78.024409

    Article  Google Scholar 

  35. Bosu S, Sepehri-Amin H, Sakuraba Y, Hayashi M, Abert C, Suess D, Schrefl T, Hono K (2016) Reduction of critical current density for out-of-plane mode oscillation in a mag-flip spin torque oscillator using highly spin-polarized Co2Fe(Ga0.5Ge0.5) spin injection layer. Appl Phys Lett 108(7):072403. doi:10.1063/1.4942373

    Article  Google Scholar 

  36. Sinha J, Hayashi M, Takahashi YK, Taniguchi T, Drapeko M, Mitani S, Hono K (2011) Large amplitude microwave emission and reduced nonlinear phase noise in Co2Fe(Ge0.5Ga0.5) Heusler alloy based pseudo spin valve nanopillars. Appl Phys Lett 99(16):162508. doi:10.1063/1.3647771

    Article  Google Scholar 

  37. Pribiag VS, Krivorotov IN, Fuchs GD, Braganca PM, Ozatay O, Sankey JC, Ralph DC, Buhrman RA (2007) Magnetic vortex oscillator driven by D.C. spin-polarized current. Nat Phys 3(7):498–503. doi:10.1038/nphys619

    Article  Google Scholar 

  38. Slavin A, Tiberkevich V (2005) Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys Rev Lett 95(23):237201. doi:10.1103/PhysRevLett.95.237201

    Article  Google Scholar 

  39. Rippard WH, Pufall MR, Kaka S, Silva TJ, Russek SE (2004) Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys Rev B 70(10):100406. doi:10.1103/PhysRevB.70.100406

    Article  Google Scholar 

  40. Rippard WH, Pufall MR, Kaka S, Silva TJ, Russek SE, Katine JA (2005) Injection locking and phase control of spin transfer nano-oscillators. Phys Rev Lett 95(6):067203. doi:10.1103/PhysRevLett.95.067203

    Article  Google Scholar 

  41. Kim J-V, Tiberkevich V, Slavin AN (2008) Generation linewidth of an auto-oscillator with a nonlinear frequency shift: spin-torque nano-oscillator. Phys Rev Lett 100(1):017207. doi:10.1103/PhysRevLett.100.017207

    Article  Google Scholar 

  42. Okura R, Sakuraba Y, Seki T, Izumi K, Mizuguchi M, Takanashi K (2011) High-power Rf oscillation induced in half-metallic Co2MnSi layer by spin-transfer torque. Appl Phys Lett 99(5):052510. doi:10.1063/1.3624470

    Article  Google Scholar 

  43. Garello K, Miron IM, Avci CO, Freimuth F, Mokrousov Y, Bluegel S, Auffret S, Boulle O, Gaudin G, Gambardella P (2013) Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol 8(8):587–593. doi:10.1038/nnano.2013.145

    Article  Google Scholar 

  44. Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55(17):1790–1793. doi:10.1103/PhysRevLett.55.1790

    Article  Google Scholar 

  45. Dyakonov MI, Perel VI (1971) Current-induced spin orientation of electrons in semiconductors. Phys Lett A 35(6):459–460. doi:http://dx.doi.org/10.1016/0375-9601(71)90196-4

  46. Manchon A, Zhang S (2009) Theory of spin torque due to spin-orbit coupling. Phys Rev B 79(9):094422. doi:10.1103/PhysRevB.79.094422

    Article  Google Scholar 

  47. Yu AB, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C: Solid State Phys 17(33):6039. doi:10.1088/0022-3719/17/33/015

    Article  Google Scholar 

  48. Liu L, Lee OJ, Gudmundsen TJ, Ralph DC, Buhrman RA (2012) Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys Rev Lett 109(9). doi:10.1103/PhysRevLett.109.096602

  49. Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H (2013) Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat Mater 12(3):240–245. doi:10.1038/nmat3522

    Article  Google Scholar 

  50. Edelstein VM (1990) Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun 73(3):233–235. doi:10.1016/0038-1098(90)90963-C

    Article  Google Scholar 

  51. Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83(9):1834–1837. doi:10.1103/PhysRevLett.83.1834

    Article  Google Scholar 

  52. Manchon A, Zhang S (2008) Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys Rev B 78(21):212405. doi:10.1103/PhysRevB.78.212405

    Article  Google Scholar 

  53. Hoffmann A (2013) Spin Hall effects in metals. IEEE Trans Magn 49(10):5172–5193. doi:10.1109/tmag.2013.2262947

    Article  Google Scholar 

  54. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T (2015) Spin Hall effects. Rev Mod Phys 87(4):1213–1260. doi:10.1103/RevModPhys.87.1213

    Article  Google Scholar 

  55. Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett 88(18):182509. doi:10.1063/1.2199473

    Article  Google Scholar 

  56. Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S (2007) Room-temperature reversible spin Hall effect. Phys Rev Lett 98(15):156601. doi:10.1103/PhysRevLett.98.156601

    Article  Google Scholar 

  57. Tanaka T, Kontani H, Naito M, Naito T, Hirashima DS, Yamada K, Inoue J (2008) Intrinsic spin Hall effect and orbital Hall effect in 4d And 5d transition metals. Phys Rev B 77(16):165117. doi:10.1103/PhysRevB.77.165117

    Article  Google Scholar 

  58. Morota M, Niimi Y, Ohnishi K, Wei DH, Tanaka T, Kontani H, Kimura T, Otani Y (2011) Indication of intrinsic spin Hall effect in 4d and 5d transition metals. Phys Rev B 83(17). doi:10.1103/PhysRevB.83.174405

  59. Haney PM, Lee H-W, Lee K-J, Manchon A, Stiles MD (2013) Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys Rev B 87(17):174411. doi:10.1103/PhysRevB.87.174411

    Article  Google Scholar 

  60. Haney PM, Lee H-W, Lee K-J, Manchon A, Stiles MD (2013) Current-induced torques and interfacial spin-orbit coupling. Phys Rev B 88(21):214417. doi:10.1103/PhysRevB.88.214417

    Article  Google Scholar 

  61. Freimuth F, Blügel S, Mokrousov Y (2014) Spin-orbit torques in Co/Pt(111) And Mn/W(001) magnetic bilayers from first principles. Phys Rev B 90(17):174423. doi:10.1103/PhysRevB.90.174423

    Article  Google Scholar 

  62. Zhang S, Levy PM, Fert A (2002) Mechanisms of spin-polarized current-driven magnetization switching. Phys Rev Lett 88(23):236601. doi:10.1103/PhysRevLett.88.236601

    Article  Google Scholar 

  63. Shpiro A, Levy PM, Zhang S (2003) Self-consistent treatment of nonequilibrium spin torques in magnetic multilayers. Phys Rev B 67(10):104430. doi:10.1103/PhysRevB.67.104430

    Article  Google Scholar 

  64. Stiles MD, Zangwill A (2002) Anatomy of spin-transfer torque. Phys Rev B 66(1):014407. doi:10.1103/PhysRevB.66.014407

    Article  Google Scholar 

  65. Freeman MR, Brady MJ, Smyth J (1992) Extremely high frequency pulse magnetic resonance by picosecond magneto-optic sampling. Appl Phys Lett 60(20):2555–2557. doi:10.1063/1.106911

    Article  Google Scholar 

  66. Freeman MR (1994) Picosecond pulsed-field probes of magnetic systems. J Appl Phys 75(10):6194–6198. doi:10.1063/1.355454

    Article  Google Scholar 

  67. Elezzabi AY, Freeman MR, Johnson M (1996) Direct measurement of the conduction electron spin-lattice relaxation time T1 in gold. Phys Rev Lett 77(15):3220–3223. doi:10.1103/PhysRevLett.77.3220

    Article  Google Scholar 

  68. Hiebert WK, Stankiewicz A, Freeman MR (1997) Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys Rev Lett 79(6):1134–1137. doi:10.1103/PhysRevLett.79.1134

    Article  Google Scholar 

  69. Stotz JAH, Freeman MR (1997) A stroboscopic scanning solid immersion lens microscope. Rev Sci Instrum 68(12):4468–4477. doi:10.1063/1.1148416

    Article  Google Scholar 

  70. Bauer M, Lopusnik R, Fassbender J, Hillebrands B, Dotsch H (2000) Successful suppression of magnetization precession after short field pulses. IEEE Trans Magn 36(5):2764–2766. doi:10.1109/20.908583

    Article  Google Scholar 

  71. Bauer M, Lopusnik R, Fassbender J, Hillebrands B (2000) Suppression of magnetic-field pulse-induced magnetization precession by pulse tailoring. Appl Phys Lett 76(19):2758–2760. doi:10.1063/1.126466

    Article  Google Scholar 

  72. Bauer M, Lopusnik R, Dötsch H, Kalinikos BA, Patton CE, Fassbender J, Hillebrands B (2001) Time domain MOKE detection of spin-wave modes and precession control for magnetization switching in ferrite films. J Magn Magn Mater 226–230, Part 1:507–509. doi:10.1016/S0304-8853(00)00992-6

  73. Crawford TM, Kabos P, Silva TJ (2000) Coherent control of precessional dynamics in thin film permalloy. Appl Phys Lett 76(15):2113–2115. doi:10.1063/1.126280

    Article  Google Scholar 

  74. Schumacher HW, Chappert C, Crozat P, Sousa RC, Freitas PP, Bauer M (2002) Coherent suppression of magnetic ringing in microscopic spin valve elements. Appl Phys Lett 80(20):3781–3783. doi:10.1063/1.1480476

    Article  Google Scholar 

  75. Schumacher HW, Chappert C, Crozat P, Sousa RC, Freitas PP, Miltat J, Fassbender J, Hillebrands B (2003) Phase coherent precessional magnetization reversal in microscopic spin valve elements. Phys Rev Lett 90(1):017201. doi:10.1103/PhysRevLett.90.017201

    Article  Google Scholar 

  76. Gerrits T, van den Berg HAM, Hohlfeld J, Bar L, Rasing T (2002) Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418(6897):509–512. doi:10.1038/nature00905

    Article  Google Scholar 

  77. Barman A, Kruglyak VV, Hicken RJ, Scott J, Rahman M (2005) Dependence of spatial coherence of coherent suppression of magnetization precession upon aspect ratio in Ni81Fe19 microdots. J Appl Phys 97(10):10A710. doi:10.1063/1.1850834

    Article  Google Scholar 

  78. Kimel AV, Kirilyuk A, Usachev PA, Pisarev RV, Balbashov AM, Rasing T (2005) Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435(7042):655–657. doi:10.1038/nature03564

    Article  Google Scholar 

  79. Kirilyuk A, Kimel AV, Rasing T (2011) Controlling spins with light. Philos Trans R Soc A: Math Phys Eng Sci 369(1951):3631–3645. doi:10.1098/rsta.2011.0168

    Article  Google Scholar 

  80. Stanciu CD, Hansteen F, Kimel AV, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T (2007) All-optical magnetic recording with circularly polarized light. Phys Rev Lett 99(4). doi:10.1103/PhysRevLett.99.047601

  81. Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Durr HA, Ostler TA, Barker J, Evans RFL, Chantrell RW, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel AV (2011) Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472(7342):205–208. doi:10.1038/nature09901

    Article  Google Scholar 

  82. Graves CE, Reid AH, Wang T, Wu B, de Jong S, Vahaplar K, Radu I, Bernstein DP, Messerschmidt M, Mueller L, Coffee R, Bionta M, Epp SW, Hartmann R, Kimmel N, Hauser G, Hartmann A, Holl P, Gorke H, Mentink JH, Tsukamoto A, Fognini A, Turner JJ, Schlotter WF, Rolles D, Soltau H, Strueder L, Acremann Y, Kimel AV, Kirilyuk A, Rasing T, Stoehr J, Scherz AO, Duerr HA (2013) Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat Mater 12(4):293–298. doi:10.1038/nmat3597

    Article  Google Scholar 

  83. Turgut E, Grychtol P, La-O-Vorakiat C, Adams DE, Kapteyn HC, Murnane MM, Mathias S, Aeschlimann M, Schneider CM, Shaw JM, Nembach HT, Silva TJ (2013) Publisher’s note: reply to “Comment on ‘Ultrafast demagnetization measurements using extreme ultraviolet light: comparison of electronic and magnetic contributions’” [Phys. Rev. X 3, 038002 (2013)PRXHAE2160-3308]. Phys Rev X 3(3), 039901. doi:10.1103/PhysRevX.3.039901

  84. Turgut E, La-o-vorakiat C, Shaw JM, Grychtol P, Nembach HT, Rudolf D, Adam R, Aeschlimann M, Schneider CM, Silva TJ, Murnane MM, Kapteyn HC, Mathias S (2013) Controlling the competition between optically induced ultrafast spin-flip scattering and spin transport in magnetic multilayers. Phys Rev Lett 110(19):197201. doi:10.1103/PhysRevLett.110.197201

    Article  Google Scholar 

  85. Battiato M, Carva K, Oppeneer PM (2010) Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys Rev Lett 105(2):027203. doi:10.1103/PhysRevLett.105.027203

    Article  Google Scholar 

  86. Malinowski G, Longa FD, Rietjens JHH, Paluskar PV, Huijink R, Swagten HJM, Koopmans B (2008) Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nat Phys 4(11):855–858. doi:10.1038/nphys1092

    Article  Google Scholar 

  87. Mangin S, Gottwald M, Lambert CH, Steil D, Uhlir V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton EE (2014) Engineered materials for all-optical helicity-dependent magnetic switching. Nat Mater 13(3):287–293. doi:10.1038/nmat3864

    Article  Google Scholar 

  88. Lambert C.-H, Mangin S, Varaprasad BSDCS, Takahashi YK, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton EE (2014) All-optical control of ferromagnetic thin films and nanostructures. Science 345(6202):1337–1340. doi:10.1126/science.1253493

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, A., Sinha, J. (2018). Electrical and Optical Control of Spin Dynamics. In: Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-66296-1_6

Download citation

Publish with us

Policies and ethics